Lagrangian Solution of Schwarzschild-like Metric for an ‎Elliptical Object

Astrophysics

Authors

  • Bijan Nikouravan * Department of Physics, Islamic Azad University (IAU)-Varamin-Pishva Branch, Varamin, Iran
  • Misha Nikouravan ‎ Department of Engineering, Sharif University, Tehran, Iran

DOI:

https://doi.org/10.55672/hij2022pp128-135

Keywords:

Schwarzschild-like solution, Lagrangian solution, Spherical object, Elliptical objects

Abstract

The Lagrangian method was applied for a linearly transformed geodesic line element of a Schwarzschild-like solution instead of the tensor method. The solution shows that it is not only valid for spherical objects but also it is more comprehensive for elliptical celestial objects. Two types of kinetic and potential energy are the basis of the calculation. Hamiltonian and Lagrangian equality show that the problem has no potential energy. With this transformed geodesic line element, we obtained a new coefficient for the meridional advance of an experimental particle in Schwarzschild spacetime in terms of period, eccentricity, and mean distance. This new perigee equation is not only valid for the Schwarzschild metric (for a spherical object), but also more accurate for the Schwarzschild-like metric (for elliptical objects).

Downloads

Download data is not yet available.

Author Biographies

Bijan Nikouravan *, Department of Physics, Islamic Azad University (IAU)-Varamin-Pishva Branch, Varamin, Iran

Bijan Nikouravan 

Misha Nikouravan ‎ , Department of Engineering, Sharif University, Tehran, Iran

Misha Nikouravan

Department of Engineering, Sharif University, Tehran, Iran

References

‎[1]‎ D. Dohrn and F. Guerra, "Geodesic correction to ‎stochastic parallel displacement of tensors," in ‎Stochastic Behavior in Classical and Quantum ‎Hamiltonian Systems: Springer, 1979, pp. 241-249.‎

‎[2]‎ H. Busemann, The geometry of geodesics. Courier ‎Corporation, 2012.‎

‎[3]‎ G. P. Paternain, Geodesic flows: Springer Science & ‎Business Media, 2012. [Online]. Available.‎

‎[4]‎ M. Balasubramanian, J. R. Polimeni, E. L. J. I. t. o. p. ‎a. Schwartz, and m. intelligence, "Exact geodesics and ‎shortest paths on polyhedral surfaces," vol. 31, no. 6, ‎pp. 1006-1016‎

‎[5]‎ D. R. Cheng and X. J. T. o. t. A. M. S. Zhou, "Existence ‎of curves with constant geodesic curvature in a ‎Riemannian 2-sphere," vol. 374, no. 12, pp. 9007-‎‎9028‎

‎[6]‎ A. Fomenko and E. Kantonistova, "Topological ‎classification of geodesic flows on revolution 2-‎surfaces with potential," in Continuous and ‎Distributed Systems II: Springer, 2015, pp. 11-27.‎

‎[7]‎ H. J. a. e.-p. Efrén Guerrero Mora, "Classification of ‎geodesics on a cone in space," p. ‎https://arxiv.org/pdf/2103.13531.pdf

‎[8]‎ A. Kumar, R. Gangopadhyay, B. Tiwari, and H. M. ‎Shah, "On Minimal Surfaces of Revolutions ‎Immersed in Deformed Hyperbolic Kropina Space," ‎Available: https://arxiv.org/pdf/2203.00220.pdf

‎[9]‎ E. Hackmann and C. J. P. R. D. Lämmerzahl, ‎‎"Geodesic equation in Schwarzschild-(anti-) de Sitter ‎space-times: Analytical solutions and applications," ‎vol. 78, no. 2, p. 024035Available: ‎https://arxiv.org/pdf/1505.07973.pdf

‎[10]‎ S. Chandrasekhar, "The mathematical theory of ‎black holes," Research supported by NSF. ‎Oxford/New York, Clarendon Press/Oxford University ‎Press (International Series of Monographs on ‎Physics. Volume 69), 1983, 663 p., vol. 1, 1983.‎

‎[11]‎ G. J. F. d. P. P. o. P. Esposito, "Mathematical ‎Structures of Space‐Time," vol. 40, no. 1, pp. 1-‎‎30Available: https://arxiv.org/pdf/gr-qc/9506088.pdf‎

‎[12]‎ R. Almeida and D. F. J. L. i. M. P. Torres, "Generalized ‎Euler–Lagrange equations for variational problems ‎with scale derivatives," vol. 92, no. 3, pp. 221-‎‎229Available: https://arxiv.org/pdf/1003.3133.pdf

‎[13]‎ C. Fox, An introduction to the calculus of variations. ‎Dover Pubns, 1987.‎

‎[14]‎ A. J. P. R. D. Schild, "Classical null strings," vol. 16, no. ‎‎6, p. 1722. doi: ‎https://doi.org/10.1103/PhysRevD.16.1722

‎[15]‎ T. Müller and J. J. E. j. o. p. Frauendiener, "Studying ‎null and time-like geodesics in the classroom," vol. 32, ‎no. 3, p. 747Available: ‎https://arxiv.org/pdf/1105.0109.pdf

‎[16]‎ U. J. G. R. Kostić and Gravitation, "Analytical time-‎like geodesics in Schwarzschild space-time," vol. 44, ‎no. 4, pp. 1057-1072, 2012.‎

‎[17]‎ E. Taillebois and A. J. P. R. A. Avelar, "Proper-time ‎approach to localization," vol. 103, no. 6, p. ‎‎062223Available: ‎https://arxiv.org/pdf/2009.13068.pdf

‎[18]‎ H. Minkowski, "Die Grundgleichungen für die ‎elektromagnetischen Vorgänge in bewegten Körpern," ‎Mathematische Annalen, vol. 68, no. 4, pp. 472-525, ‎‎1910.‎

‎[19]‎ Y. J. O. Kim and Spectroscopy, "Possible ‎Minkowskian language in two-level systems," vol. ‎‎108, no. 2, pp. 297-300Available: ‎https://arxiv.org/pdf/0811.0970.pdf

‎[20]‎ N. M. J. Woodhouse, General relativity. Springer ‎Verlag, 2007.‎

‎[21]‎ B. Nikouravan, "Schwarzschild-like solution for ‎ellipsoidal celestial objects," vol. 6, no. 6, pp. 1426-‎‎1430Available: ‎https://ui.adsabs.harvard.edu/abs/2011IJPS....6.1426‎N/abstract

‎[22]‎ B. Nikouravan and J. J. Rawal, "Mass as the Fifth ‎Dimension of the Universe," vol. 2013. doi: ‎DOI:10.4236/ijaa.2013.33030 Available: ‎https://ui.adsabs.harvard.edu/abs/2003APS..APRR12‎‎005L/abstract‎

‎[23]‎ M. Parry and E. Domina, "Field theory handbook, ‎Including coordinate systems," ed: Springer–Verlac ‎press, 1961.‎

Published

2022-09-15

How to Cite

Nikouravan *, B., & Nikouravan ‎ , M. (2022). Lagrangian Solution of Schwarzschild-like Metric for an ‎Elliptical Object: Astrophysics. Hyperscience International Journal, 2(3), 128–135. https://doi.org/10.55672/hij2022pp128-135

Plaudit