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ABSTRACT 

in this paper, we will calculate an integrating factor, first integral and reduce the order the non-Linear second-order ODEs 

�̈�(𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, through 𝜆-symmetry method. Moreover, we compute an integrating factor, first integral and reduce the 

order for particular cases of this equation. 
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INTRODUCTION  

Symmetries method have been widely used to reduce 

the order of an ordinary differential equation (ODE) 

and to reduce the number of independent variables in a 

partial differential equation (PDE)[1].  

There are many examples of ODEs that have trivial Lie 

symmetries. In 2001, Muriel and Romero introduced λ-

symmetry method to reduce the order of an ODEs and 

to find general solutions for such examples.  

Recently, they [2] presented techniques to obtain first 

integral, integrating factor, 𝜆-symmetry of second-

order ODEs �̈� = 𝐹(𝑡, 𝑥, �̇�) and the relationship between 

them.  

In addition, the study of a 𝜆-symmetry method of the 

ODEs permits us the de termination of an integrating 

factor and reduce the order of the ODEs and explain the 

reduction process of many ODEs that lack Lie 

symmetries. 

In this paper, first we will recall some of the 

foundational results about symmetry and λ-symmetry 

rather briefly. we present some theorems about an 

integrating factor, first integral and reduce the order of 

the ODEs. second, we will calculate an integrating 

factor, first integral and reduce the or der the non-

Linear second-order ODEs �̈� = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, 

through 𝜆 symmetry method, which are non-Lie 

symmetry equation and functions 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) 

are arbitrary.  

Moreover, we will reduce the order particular cases of 

the equation 𝑥 =̈ (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, which are �̈� =

(𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, and �̈� = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥, 

through 𝜆-symmetry method. we will present many 

examples for these equations. 

 

𝝀-SYMMETRIES ON ODES 

In this section we recall some of the foundational 

results about symmetry and λ-symmetry rather briefly 

[2-9].  

Let v be a vector field defined on an open subset 𝑀 ⊂
𝑇 × 𝑋.  
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We denote by 𝑀(𝑛) the corresponding jet space 𝑀(𝑛) ⊂

𝑇 × 𝑋(𝑛), for 𝑛 ∈ 𝑁. Their elements are (𝑡, 𝑥(𝑛)) =

(𝑡, 𝑥, 𝑥1,· · · , 𝑥𝑛), where, for 𝑖 =  1, 2,· · · , 𝑛, 𝑥𝑖  

denotes the derivative of order 𝑖 of 𝑥 with respect to t. 

Suppose  

∆(𝑡,  𝑥(𝑛)) = 0    (1)  

 

be an ODE defined over the total space 𝑀. The latter 

characterizes a Lie symmetry of an ODE as a vector 

filed v= 𝜉(𝑡, 𝑥)𝜕/𝜕𝑡 + 𝜂(𝑡, 𝑥)𝜕/𝜕𝑥, that satisfies 

𝐯(𝑛)[∆(𝑡, 𝑥(𝑛))] = 0, if ∆(𝑡, 𝑥(𝑛)) = 0, where 𝐯(𝑛)that 

called 𝑛 − 𝑡ℎ prolongation of v is 

 

𝐯(𝑛) = 𝜉(𝑡, 𝑥)
𝜕

𝜕𝑡
+ 𝜂(𝑡, 𝑥)

𝜕

𝜕𝑥
+ ∑ 𝜂(𝑖)

𝑛

𝑖=1

(𝑡, 𝑥(𝑖))
𝜕

𝜕𝑥𝑖

 

 

Where 

𝜂(𝑖)(𝑡, 𝑥(𝑖)) = 𝐷𝑡 (𝜂(𝑖−1)(𝑡, 𝑥(𝑖−1))) 

−𝐷𝑡(𝜉(𝑡, 𝑥))𝑥𝑖 

 

and  𝜂(0)(𝑡, 𝑥) = 𝜂(𝑡, 𝑥) for  𝑖 = 1,· · · , 𝑛, where 𝐷𝑡  

denote the total derivative operator with respect to 𝑡 

[9].  

If an ODE does not have Lie point symmetry, then we 

using λ-symmetry method for reduce of order the ODE. 

λ-symmetry method is as follows [3]. 

For every function 𝜆 ∈ 𝐶∞(𝑀(1)), we will define a new 

prolongation and Lie symmetry of v in the following 

way. 

Let v= 𝜉(𝑡, 𝑥)𝜕/𝜕𝑡 + 𝜂(𝑡, 𝑥)𝜕/𝜕𝑥, be a vector field 

defined on 𝑀, and let 𝜆 ∈ 𝐶∞(𝑀(1)) be an arbitrary 

function. The λ-prolongation of order n of v, denoted 

by 𝐯[𝜆,(𝑛)], is the vector field defined on 𝑀 by 

 

𝐯[𝜆,(𝑛)] = 𝜉(𝑡, 𝑥)
𝜕

𝜕𝑡
+ 𝜂(𝑡, 𝑥)

𝜕

𝜕𝑥

+ ∑ 𝜂(𝑖)

𝑛

𝑖=1

(𝑡, 𝑥(𝑖))
𝜕

𝜕𝑥𝑖
 

where 

 

𝜂[𝜆,(𝑖)](𝑡, 𝑥(𝑖)) = (𝐷𝑡 + 𝜆) (𝜂[𝜆,(𝑖−1)](𝑡, 𝑥(𝑖−1)))

− ((𝐷𝑡 + 𝜆)𝜉(𝑡, 𝑥))𝑥𝑖 

 

and  𝜂[𝜆,(0)] (𝑡, 𝑥) = 𝜂(𝑡, 𝑥) for  𝑖 =  1,· · · , 𝑛.   

A vector field v is a λ-symmetry of the Eq. (1), if there 

exists function 𝜆 ∈ 𝐶∞(𝑀(1)), such that 

𝐯[𝜆,(𝑛)][Δ(𝑡, 𝑥(𝑛))] = 0, if  Δ(𝑡, 𝑥(𝑛)) = 0.  

 

Note. Suppose vector field 𝑣 = 𝜕/𝜕𝑥 be a λ-symmetry 

of the Eq.(1), then 

𝜂[𝜆,(𝑛−1)] =
𝜕

𝜕𝑥
+ (𝐷𝑡 + 𝜆)(1)

𝜕

𝜕𝑥1

+ (𝐷𝑡 + 𝜆)(𝐷𝑡 + 𝜆)(1)
𝜕

𝜕𝑥2
+∙ ∙ 

∙  +(𝐷𝑡 + 𝜆)(𝐷𝑡 + 𝜆)(1) 
𝜕

𝜕𝑥𝑛−1
  

or equivalent 

𝑣[𝜆,(𝑛−1)] = ∑(𝐷𝑡 + 𝜆)(𝑖)(1)

𝑛

𝑖=1

𝜕

𝜕𝑥𝑖
 

(2) 
 

An integrating factor of the Eq. (1), is a function 

𝜇(𝑡, 𝑥(𝑛−1)) such that the equation 𝜇. ∆ =  0 is an exact 

equation, 

  

𝜇(𝑡, 𝑥(𝑛−1)). ∆(𝑡, 𝑥(𝑛)) = 𝐷𝑡 (𝐺(𝑡, 𝑥(𝑛−1))). 

 

Function 𝐺(𝑡, 𝑥(𝑛−1)), will be called a first integral of 

the Eq. (1), and 𝐷𝑡 (𝐺(𝑡, 𝑥(𝑛−1))) = 0, is a conserved 

form of the Eq.(1) [6, 10]. Let  

 

𝑥𝑛  =  𝐹(𝑡, 𝑥(𝑛−1))    (3)  

 

be a nth-order ordinary differential equation, where F 

is an analytic function of its arguments. We denote by 

 𝐴 = 𝜕𝑡 + 𝑥1𝜕𝑥 + 𝑥2𝜕𝑥(1) +· · · +𝐹(𝑡, 𝑥(𝑛−1))𝜕𝑥(𝑛−1)  

the vector field associated with (3) [3].  

Function 𝐼(𝑡, 𝑥(𝑛−1)) is a first integral [7]of (3), such 

that 𝐴(𝐼) = 0 and an integrating factor of (3), is any 

function 𝜇(𝑡, 𝑥(𝑛−1)) such that 

 

 𝜇 ((𝑡, 𝑥(𝑛−1))𝑥(𝑛) − 𝐹(𝑡, 𝑥(𝑛−1))) = 𝐷𝑡𝐼(𝑡, 𝑥(𝑛−1)). 

 

By using (2), It can be checked that the vector field 𝑣 =
𝜕𝑥  is a λ-symmetry of (3), if the function λ(t, x(k)) is any 

particular solution of the equation 
 

(𝐷𝑡 + 𝜆)(𝑛)(1) = ∑(𝐷𝑡 + 𝜆)(𝑖)(1)

𝑛−1

𝑖=0

𝜕𝐹

𝜕𝑥𝑖
 

(4) 
 
Theorem 2.1. If I(t, x(n−1)) is a first integral of (3), then 

µ(𝑡, 𝑥(𝑛−1)) = 𝐼𝑥(𝑛−1)  (𝑡, 𝑥(𝑛−1))is an integrating 

factor of (3).  

 

Proof. Let I(t, x(n−1)) be a first integral of (3), then 

 

 𝐴(𝐼) = 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) +· · · 

+𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) = 0. 
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Therefore 

 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) +· · · +𝑥(𝑛−1)𝐼𝑥(𝑛−2) = 

 

−𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) 

 and  

 

𝐷𝑡𝐼 = 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) + · · ·  + 𝑥(𝑛−1)𝐼𝑥(𝑛−2) +

𝑥(𝑛)𝐼 𝑥(𝑛−1) = −𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) + 𝑥(𝑛)𝐼𝑥(𝑛−1) =

𝐼𝑥(𝑛−1)(𝑥(𝑛) − 𝐹(𝑡, 𝑥(𝑛−1))).  

 

Hence 𝜇(𝑡, 𝑥(𝑛−1))  =  𝐼𝑥(𝑛−1)(𝑡, 𝑥(𝑛−1)). The vector 

field 𝑣 = 𝜉(𝑡, 𝑥)𝜕𝑡  +  𝜂(𝑡, 𝑥)𝜕𝑥  is a λ-symmetry of 

equation (3) if and only if [𝑣[𝜆,(𝑛−1)], 𝐴]  =

 𝜆𝑣[𝜆,(𝑛−1)]  +  𝜏𝐴 where 𝜏 = −(𝐴 +  𝜆)(𝜉(𝑡, 𝑥)) [3]. 

When 𝑣 =  𝜕𝑥  is a λ-symmetry of equation 3) if and 

only if [𝑣[𝜆,(𝑛−1)], 𝐴] =  𝜆𝑣[𝜆,(𝑛−1)] . 

  

Theorem 2.2. If v = ∂x is a λ-symmetry of (3) for some 

function λ(t, x(n−1)), then there is a first integral I(t, 

x(n−1)) of (3) such that 𝑣[𝜆,(𝑛−1)] (I) = 0 

 

Proof. If 𝑣 = 𝜕𝑥  is a 𝜆-symmetry of (3) for some 

function 𝜆(𝑡 , 𝑥(𝑛−1)), then [ 𝑣[𝜆,(𝑛−1)] , 𝐴] =
𝜆𝑣[𝜆,(𝑛−1)]. 

Therefore {𝑣[𝜆,(𝑛−1)], 𝐴} is an involutive set of vector 

fields in 𝑀(n−1) and there is function 𝐼(𝑡, 𝑥(𝑛−1)) such 

that 𝑣[𝜆,(𝑛−1)](𝐼) = 0 and 𝐴(𝐼) = 0. 

Let 𝜔(𝑡, 𝑥(𝑛−1)) be a first integral of 𝑣[𝜆,(𝑛−1)], i.e, 

𝑣[𝜆,(𝑛−1)](𝜔) = 0, then by using of (2), 𝜔(𝑡,  𝑥(𝑛−1)) is 

a solution of PDE:  

𝜔𝑥 + (𝐷𝑡 + 𝜆)(1)𝜔𝑥(1) + · · 

· + (𝐷𝑡 + 𝜆)𝑛−1(1)𝜔𝑥(𝑛−1) = 0 

(5)  

 

Let 𝐼(𝑡, 𝑥(𝑛−1)) = 𝐺(𝑡, 𝜔(𝑡, 𝑥(𝑛−1))) be a first integral 

of (3), then 

 

 0 = 𝐴(𝐼) = 𝐼𝑡 + 𝑥(1)𝐼𝑥 + 𝑥(2)𝐼𝑥(1) + · · ·

+ 𝐹(𝑡, 𝑥(𝑛−1))𝐼𝑥(𝑛−1) 

= (𝐺𝑡 + 𝐺𝜔𝜔𝑡) + 𝑥(1)(𝐺𝜔𝜔𝑥) + 𝑥(2)(𝐺𝜔𝜔𝑥(1)) + · · 

·  + 𝐹(𝑡, 𝑥(𝑛−1))(𝐺𝜔𝜔𝑥(𝑛−1)) 

= 𝐺𝑡 + 𝜔𝑡 + 𝑥(1)𝜔𝑥 + 𝑥(2)𝜔𝑥(1) + · · 

· + 𝐹(𝑡, 𝑥(𝑛−1))𝜔𝑥(𝑛 − 1))𝐺𝜔  

= 𝐺𝑡 + 𝐴(𝜔)𝐺𝜔 = 𝐺𝑡 + 𝐻(𝑡, 𝜔)𝐺𝜔 

 

where 𝐴(𝜔) = 𝐻(𝑡, 𝜔). Hence, if 𝐺(𝑡, 𝜔) is a 

particular solution of 𝐺𝑡 + 𝐻(𝑡, 𝜔)𝐺𝜔 = 0 then 

𝐼(𝑡, 𝑥(𝑛−1)) = 𝐺(𝑡, 𝜔(𝑡, 𝑥(𝑛−1))) is a first integral of 

(3). In summary, a procedure to find a first integral 

𝐼(𝑡, 𝑥(𝑛−1)) and consequently an integrating factor 

𝜇(𝑡, 𝑥(𝑛−1)) of (3), by using λ-symmetry method is as 

follows. 

  

• The vector field 𝑣 =  𝜕𝑥 is a λ-symmetry of (3), if 

function λ(t, x(n−1)) is any particular solution of the 

equation (4).  

• Find a first integral ω(t, x(n−1)), i.e. a particular 

solution of the equation (5).  

• Evaluate A(ω) = H(t, ω).  

• Find a first integral G(t,ω) from the solution of the 

equation Gt + H(t, ω)Gω = 0.  

• The function 𝐼(𝑡, 𝑥(𝑛−1)) = 𝐺(𝑡, 𝜔(𝑡, 𝑥(𝑛−1))) is a 

first integral of (3).  

• The function µ(𝑡, 𝑥(𝑛−1)) = 𝐼𝑥(𝑛−1)  (𝑡, 𝑥(𝑛−1)) is an 

integrating factor of (3). 

 

We focus our attention on second order ODEs, 𝑛 = 2 

in equation (3), i.e. 

 

�̈� = 𝐹(𝑥, 𝑢, �̇�)    (6)  

 

where F is an analytic function of its arguments. A 

procedure to find a first integral 𝐼(𝑡, 𝑥, �̇�) and 

consequently an integrating factor µ(𝑡, 𝑥, �̇�) of (3), by 

using λ-symmetry method is as follows. 

 

• The vector field 𝑣 =  𝜕𝑥  is a λ- symmetry of (6), if 

function 𝜆(𝑡, 𝑥, �̇�) is any particular solution of the 

equation 

  

𝐷𝑡(𝜆) + 𝜆2 =
𝜕𝐹

𝜕𝑥
+ 𝜆

𝜕𝐹

𝜕𝑥
   (7) 

 
• Let v be a λ-symmetry of (6), then 𝜔(𝑡, 𝑥, �̇�) is a first-

order invariant of 𝑣[𝜆,1], that is, any particular solution 

of the equation  

 

𝜔𝑥 + 𝜆(𝑡, 𝑥, �̇�). 𝜔�̇� = 0    (8)  

 

• Evaluate A(ω) = H(t, ω).  

• Find a first integral G(t, ω) from the solution of the 

equation Gt + H(t, ω)Gω = 0.  

• The function 𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) is a first 

integral of (6). 

• The function 𝜇(𝑡, 𝑥, �̇�) = 𝐼𝑥˙(𝑡, 𝑥, �̇�) is an integrating 

factor of (6). 
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REDUCTION OF �̈� = (𝒇(𝒕, 𝒙) + 𝒈(𝒕, 𝒙)�̇�)𝒆𝑥, BY 

λ-SYMMETRY METHOD  

Let  

𝑥¨ = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥   (9)  

 

be a second-order ordinary differential equation, where 

𝐹(𝑡, 𝑥, �̇�) = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥 is an analytic 

function on its arguments and 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are 

arbitrary functions. It can be checked that this equation 

does not have Lie point symmetry. There exists a 

function 𝜆(𝑡, 𝑥, �̇�) such that the vector field 𝑣 =  𝜕𝑥  is 

a λ-symmetry of the equation (9). To determine such 

functions 𝜆(𝑡, 𝑥, �̇�), by (7), λ is any particular solution 

for the equation.  

 

0 = 𝐷𝑡(𝜆) +  𝜆2 −
𝜕𝐹

𝜕𝑥
− 𝜆

𝜕𝐹

𝜕�̇�
 

=  𝜆𝑡 + �̇�𝜆𝑥 + �̈�𝜆�̇� + 𝜆2 − (𝑓𝑥 + 𝑔𝑥�̇�)𝑒𝑥 − (𝑓 +

𝑔�̇�)𝑒𝑥 − 𝜆𝑔𝑒𝑥  

or corresponding to  

 

𝜆𝑡 + �̇�𝜆𝑥 + (𝑓 + 𝑔�̇�)𝑒𝑥𝜆�̇� + 𝜆2 − (𝑓𝑥 + 𝑔𝑥�̇�)𝑒𝑥

− (𝑓 + 𝑔�̇�)𝑒𝑥 − 𝜆𝑔𝑒𝑥 = 0 

(10)  

For the sake of simplicity, we try to find a solution λ 

(10) of the form 𝜆(𝑡, 𝑥, �̇�) =  𝜆1(𝑡, 𝑥)�̇� + 𝜆2(𝑡, 𝑥), we 

obtain the following system: 

  

𝜆1
2 + (𝜆1)𝑥 = 0  

(𝜆1)𝑡 + (𝜆2)𝑥 + 2𝜆1𝜆2 − 𝑔𝑥𝑒𝑥  −  𝑔𝑒𝑥 = 0, 

(𝜆2)𝑡 + 𝑓𝑒𝑥𝜆1 + 𝜆2
2 − 𝑓𝑥𝑒𝑥 − 𝑓𝑒𝑥 − 𝜆2𝑔𝑒𝑥 = 0, 

 

A particular solution of the first equation is given 

by 𝜆1 = 0. The second and third equations become  

(𝜆2)𝑥 − 𝑔𝑥𝑒𝑥 − 𝑔𝑒𝑥 = 0 

(𝜆2)𝑡 + 𝜆2
2 − 𝑓𝑥𝑒𝑥 − 𝑓𝑒𝑥 − 𝜆2𝑔𝑒𝑥 = 0 

 

For the first equation and the second equation, we have  

 

𝑔 = (𝜆2 + 1)𝑒−𝑥, and 𝑓 = (∫ ((𝜆2)𝑡 − 𝜆2)𝑑𝑥)𝑒−𝑥 

 
A particular solution of this system is 𝜆2 = 𝑔𝑒𝑥 − 1, 

where 𝑔𝑡 − 𝑔 + 𝑒−𝑥 = 𝑓𝑥 + 𝑓. Hence, 

 

𝜆(𝑡, 𝑥, �̇�) = 𝜆1(𝑡, 𝑥)�̇� + 𝜆2(𝑡, 𝑥) = 𝜆2(𝑡, 𝑥) = 

𝑔(𝑡, 𝑥)𝑒𝑥 − 1. 

 

Therefore, the vector field 𝑣 =  𝜕𝑥 is a λ-symmetry of 

(9) for  

𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑡, 𝑥)𝑒 𝑥 − 1    (11)  

 

To find an integrating factor associated to 𝜆, first, we 

find a first integral invariant 𝜔(𝑡, 𝑥, �̇�) of 𝑣[𝜆,1] by the 

equation that corresponds to (8), which means, 

 

 𝜔𝑥 + (𝑔𝑒𝑥 − 1)𝜔�̇� = 0    (12)  

 

For the sake of simplicity, we try to find a solution 𝜔 

of the form 𝜔(𝑡, 𝑥, �̇�) = 𝜔1(𝑡, 𝑥)�̇� + 𝜔2(𝑡, 𝑥), we have 

 

(𝜔1)𝑥�̇� + (𝜔2)𝑥 + (𝑔𝑒𝑥 − 1)𝜔1 = 0 

 

or corresponding 

 

(𝜔1)𝑥 = 0, (𝜔2)𝑥 + (𝑔𝑒𝑥 − 1)𝜔1 = 0 

 

A particular solution of the first equation is given by 

𝜔1 = 1. the second equation become (𝜔2)𝑥 + (𝑔𝑒𝑥 −
1) = 0, the solution of this equation is 𝜔2 =

−∫ 𝑔𝑒𝑥𝑑𝑥 + 𝑥. Hence,  

 

𝜔(𝑡, 𝑥, �̇�) = 𝜔1(𝑡, 𝑥)�̇� + 𝜔2(𝑡, 𝑥)�̇� 

− ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 + 𝑥 

(13)  

 

is a particular solution for (12). The vector field 

associated 𝐴 = 𝜕𝑡 + �̇�𝜕𝑥 + 𝐹(𝑡, 𝑥, �̇�)𝜕�̇� acts on ω, 

then, we have  

 

𝐴(𝜔) = − ∫ 𝑒𝑥𝑔𝑡𝑑𝑥 + �̇� + 𝑓𝑒𝑥 

= − ∫ 𝑒𝑥𝑔𝑡𝑑𝑥 + �̇� + (∫((𝜆2)𝑡−𝜆2) 𝑑𝑥) 

  

= − ∫ 𝑒𝑥𝑔𝑡𝑑𝑥 + �̇� + ∫(𝑔𝑡𝑒𝑥 − 𝑔𝑒𝑥 + 1) 𝑑𝑥 

 

= �̇� − ∫ 𝑔𝑒𝑥𝑑𝑥 + 𝑥 = 𝜔 = 𝐻(𝑡, 𝜔) 

 

Therefore, 𝐴(𝜔) = 𝜔 = 𝐻(𝑡, 𝜔). The function 

  

𝐺(𝑡, 𝜔) = 𝜔𝑒−𝑡     (14) 

 

 is a particular solution for the equation Gt + ωGω = 0. 

Therefore,  

𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�))

= ( �̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡 

 

is a first integral of (9) also the function 
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 µ(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑒−𝑡    (15) 

 

is an integrating factor of (9). Also, 

𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�))

= 𝐷𝑡(�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡)
= 0 

is a conserved form of (9). 

Summation. λ-symmetry method to find a first integral 

𝐼(𝑡, 𝑥, �̇�) and con sequently an integrating factor 

µ(𝑡, 𝑥, �̇�) of (9) is as follows. 

  

• The vector field v = ∂x is a λ- symmetry of (9), and 

function 𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑡, 𝑥)𝑒𝑥 − 1 is a particular 

solution of the equation 𝐷𝑡(𝜆) + 𝜆2 = 𝜕𝐹/𝜕𝑥 +
 𝜆 𝜕𝐹/𝜕�̇�. 

• Let v be a λ-symmetry of (9), then 𝜔(𝑡, 𝑥, �̇�) = �̇� +
𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 is a first-order invariant of 𝑣[𝜆,1], 

that is, a particular solution of the equation 𝜔𝑥 +
(𝑔(𝑡, 𝑥)𝑒𝑥 − 1)𝜔𝑥˙ = 0.  

• We have 𝐴(𝜔) = 𝐻(𝑡, 𝜔) = 𝜔.  

• The function 𝐺(𝑡, 𝜔) = 𝜔𝑒−𝑡 is a particular solution 

for the equation Gt + ωGω = 0.  

• The function 𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = (�̇� + 𝑥 −

∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡 is a first integral of (9). Also, 

𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝐷𝑡 ((�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡) = 0, is a 

conserved form of (9).  

• The function 𝜇(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑒−𝑡, is an 

integrating factor of (9).  

 

Corollary 3.1. Equality 𝐷𝑡 ((�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡) =

0 is a conserved form of (9), therefore reduce the order 

of equation �̈� = (𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)�̇�)𝑒𝑥 is the equation 

�̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 = 0.  

 

SPECIAL CASES OF THE EQUATION 

 �̈� = (𝒇(𝒕, 𝒙) + 𝒈(𝒕, 𝒙)�̇�)𝒆𝒙 

 

Special cases of the equation �̈� = (𝑓(𝑡, 𝑥) +
𝑔(𝑡, 𝑥)�̇�)𝑒𝑥 are  �̈� = (𝑓( 𝑥) + 𝑔(𝑥)�̇�)𝑒𝑥. We consider 

the second-order ODE 

  

�̈� = (𝑓(𝑡) + 𝑔(𝑡)�̇�)𝑒𝑥   (16)  

 

where 𝐹(𝑡, 𝑥, �̇�) = (𝑓(𝑡)  +  𝑔(𝑡)�̇�)𝑒𝑥  is an analytic 

function on its arguments and f(t) and g(t) are arbitrary 

functions. It can be checked that this equation does not 

have Lie point symmetry.  

Similar of the equation (9), λ-symmetry method to find 

a first integral 𝐼(𝑡, 𝑥, �̇�) and consequently an 

integrating factor µ(𝑡, 𝑥, �̇�) of (16) is as follows: The 

vector field v = ∂x is a λ-symmetry of (16), and function 

𝜆(𝑡, 𝑥, 𝑥 ̇ ) = 1/𝑡 + 𝑔(𝑡)𝑒𝑥  is a particular solution of 

the equation 𝐷𝑡(𝜆) + 𝜆2 = 𝜕𝐹/𝜕𝑥 + 𝜆 𝜕𝐹/𝜕𝑥 ̇. 
Let v be a λ-symmetry of (16), then 𝜔(𝑡, 𝑥, �̇�) = �̇� −
𝑔(𝑡)𝑒𝑥 − 𝑥/𝑡 is a first-order invariant of v[λ,1], that is, a 

particular solution of the equation 𝜔𝑥 + (1/𝑡 +
𝑔(𝑡)𝑒𝑥)𝜔�̇� = 0. We have A(ω) = H(t, ω) = −(1/t)ω.  

The function G(t, ω) = tω is a particular solution for the 

equation Gt − (1/t) ω Gω = 0. The function 𝐼(𝑡, 𝑥, �̇�) =
𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) =  𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥, is a first integral 

of (16).  

Also, 𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝐷𝑡(𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥) = 0, is 

a conserved form of (16). The function 𝜇(𝑡, 𝑥, �̇�) =

 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑡 is an integrating factor of (16).  

 

Corollary 4.1. Equality 𝐷𝑡(𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥) = 0, is a 

conserved form of (4.1), therefore reduce the order of 

the equation �̈� = (𝑓(𝑡) + 𝑔(𝑡)�̇�)𝑒𝑥, is the 

equation 𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥 = 0.  

 

We consider the second-order ODE  

 

�̈� = (𝑓(𝑡) + 𝑔(𝑡)�̇�)𝑒𝑥    (17)  

 

where 𝐹(𝑡, 𝑥, �̇�) = (𝑓(𝑥) + 𝑔(𝑥) �̇�)𝑒𝑥  is an analytic 

function on its arguments and f(x) and g(x) are arbitrary 

functions. It can be checked that this equation does not 

have Lie point symmetry.  

Similar of the equation (9), λ-symmetry method to find 

a first integral 𝐼(𝑡, 𝑥, �̇�) and consequently an 

integrating factor µ(𝑡, 𝑥, �̇�) of (17) is as follows: The 

vector field v = ∂x  is a λ-symmetry of (17), and function 

𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑥)𝑒𝑥 − 1 is a particular solution of the 

equation 𝐷𝑡(𝜆) + 𝜆2 = 𝜕𝐹 /𝜕𝑥 + 𝜆𝜕𝐹/𝜕�̇�,  

Let v be a λ-symmetry of (17), then 𝜔(𝑡, 𝑥, �̇�) = �̇� +

 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥 is a first-order invariant of 𝑣[𝜆,1], that 

is, a particular solution of the equation 𝜔𝑥 +
(𝑔(𝑥)𝑒𝑥 − 1)𝜔�̇� = 0. We have 𝐴(𝜔) = 𝐻(𝑡, 𝜔) = 𝜔.  

The function G(t, ω) = ωe−t, is a particular solution for 

the equation 𝐺𝑡 + 𝜔𝐺𝜔 = 0. The function 𝐼(𝑡, 𝑥, �̇�) =

 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = (�̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡, is a 

first integral of (4.2). Also, 𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) =

 𝐷𝑡 (( �̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥)𝑒−𝑡) = 0, is a conserved 

form of (17). The function µ(𝑡, 𝑥, �̇�)  =  𝐼 �̇�(𝑡, 𝑥, �̇�) =
𝑒−𝑡, is an integrating factor of (17).  

 

Corollary 4.2. Equality 𝐷𝑡(�̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥) =

0, is a conserved form of (4.2), therefore reduce the 

order of the equation �̈� = (𝑓(𝑥) + 𝑔(𝑥)�̇�)𝑒𝑥, is the  

equation �̇� + 𝑥 − ∫ 𝑔(𝑥)𝑒𝑥𝑑𝑥 = 0.  
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SOME ILLUSTRATIONS  

Example 1. We consider the second-order ordinary 

differential equation 

 

 �̈� = (𝑡3 − 1)𝑐𝑜𝑠 𝑥 + (𝑡𝑠𝑖𝑛 𝑥 + 1)�̇�   (18)  

 

where in the Eq. (9), 𝑓(𝑡, 𝑥) = (𝑡3 − 1) 𝑐𝑜𝑠 𝑥𝑒−𝑥 and 

𝑔(𝑡, 𝑥) = (𝑡 𝑠𝑖𝑛 𝑥 + 1)𝑒−𝑥 and also the function 

𝐹(𝑡, 𝑥, �̇�) = (𝑡3 − 1)𝑐𝑜𝑠 𝑥 + (𝑡𝑠𝑖𝑛 𝑥 + 1)�̇�, is an 

analytic function on its arguments. It can be checked 

that this equation does not have Lie point symmetry. 

Therefore, we have for the equation (18). 

The vector field v = ∂x is a λ-symmetry of (18), and 

function 𝜆(𝑡, 𝑥, �̇�) = 𝑔(𝑡, 𝑥)𝑒𝑥 − 1 = 𝑡𝑠𝑖𝑛 𝑥, is a 

particular solution of the equation 𝐷𝑡(𝜆) + 𝜆2 =
𝜕𝐹/𝜕𝑥 +  𝜆𝜕𝐹/𝜕 �̇�.  

Let v be a λ-symmetry of (5.1), then 𝜔(𝑡, 𝑥, �̇�) =  �̇� +
 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥 =  �̇� + 𝑡 𝑐𝑜𝑠 𝑥, is a first-order 

invariant of 𝑣[𝜆,1], that is, a particular solution of the 

equation ωx+(tsin x)ωx˙ = 0. We have 𝐴(𝜔) =
𝐻(𝑡, 𝜔) = 𝜔. The function G(t, ω) = ωe−t, is a 

particular solution for the equation Gt + ωGω = 0.  

The function  

𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 

( �̇� + 𝑥 − ∫ 𝑔(𝑡, 𝑥)𝑒𝑥𝑑𝑥)𝑒 − 𝑡 = ( �̇� + 𝑡 𝑐𝑜𝑠 𝑥)𝑒−𝑡, 

is a first integral of (5.1). 𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) =

𝐷𝑡((�̇� + 𝑡 𝑐𝑜𝑠 𝑥)𝑒−𝑡) = 0, is a conserved form of 

(18). The function µ(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑒−𝑡, is an 

integrating factor of (18). Therefore, we reduce the 

order of the equation �̈� = (𝑡3 − 1)𝑐𝑜𝑠 𝑥 + (𝑡𝑠𝑖𝑛 𝑥 +
1)�̇�, to the equation (�̇� + 𝑡 𝑐𝑜𝑠 𝑥)𝑒−𝑡 = 0. This 

equation does not have Lie point symmetries.  

 

Example 2. Let  

 

�̈� = (𝑠𝑖𝑛ℎ 𝑡 + 𝑐𝑜𝑠ℎ 𝑡/𝑡 + 𝑐𝑜𝑠ℎ 𝑡�̇�)𝑒𝑥  (19) 

  

where in the Eq. (19), 𝑓(𝑡) = 𝑠𝑖𝑛 𝑡 + 𝑐𝑜𝑠ℎ 𝑡/𝑡 and 

𝑔(𝑡) = 𝑐𝑜𝑠ℎ 𝑡 and also the function 𝐹(𝑡, 𝑥, �̇�) =
(𝑠𝑖𝑛 𝑡 + 𝑐𝑜𝑠ℎ𝑡/𝑡 + 𝑐𝑜𝑠ℎ 𝑡�̇�)𝑒𝑥, is an analytic 

function on its arguments.  

This equation does not have Lie point symmetry. We 

have for the equation (19). 

The vector field v = ∂x is a λ-symmetry of (19), and 

function 𝜆(𝑡, 𝑥, �̇�) = 1/𝑡 + 𝑔(𝑡)𝑒𝑥 = 1/𝑡 +  𝑐𝑜𝑠ℎ(𝑡)𝑒𝑥, 

is a particular solution of the equation 𝐷𝑡(𝜆) + 𝜆2 =
 𝜕𝐹/𝜕𝑥 +  𝜆𝜕𝐹/𝜕�̇�.  

Let v be a λ-symmetry of (19), then 𝜔(𝑡, 𝑥, �̇�) = �̇� −
𝑔(𝑡)𝑒𝑥 − 𝑥/𝑡 = �̇� − 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥/𝑡, is a first-order 

invariant of 𝑣[𝜆,1], that is, a particular solution of the 

equation 𝜔𝑥 + (1/𝑡 + 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥)𝜔𝑥 =̇ 0. We have 

𝐴(𝜔) = 𝐻(𝑡, 𝜔) = −(1/𝑡)𝜔.  

The function 𝐺(𝑡, 𝜔) = 𝑡𝜔, is a particular solution for 

the equation 𝐺𝑡 − (1/𝑡)𝜔𝐺𝜔 = 0. The function 

𝐼(𝑡, 𝑥, �̇�) = 𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝑡�̇� − 𝑡𝑔(𝑡)𝑒𝑥 − 𝑥 =

𝑡�̇� − 𝑡 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥, is a first integral of (19). Also, 

𝐷𝑡(𝐺(𝑡, 𝜔(𝑡, 𝑥, �̇�)) = 𝐷𝑡(𝑡�̇� − 𝑡 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥) = 0, 

is a conserved form of (19).  

The function µ(𝑡, 𝑥, �̇�) = 𝐼�̇�(𝑡, 𝑥, �̇�) = 𝑡, is an 

integrating factor of (19).  

Therefore, we reduce the order of the equation �̈� =
(𝑠𝑖𝑛ℎ 𝑡 + 𝑐𝑜𝑠ℎ𝑡/𝑡 + 𝑐𝑜𝑠ℎ 𝑡�̇�)𝑒𝑥, to the equation 𝑡�̇� −
𝑡 𝑐𝑜𝑠ℎ 𝑡𝑒𝑥 − 𝑥 = 0. This equation dose not have Lie 

point symmetries. 
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