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ABSTRACT 

This work analyses the dynamic response of Tension Leg Platform, TLP under sea wave induced forces with the aid of fluid 

dynamics modified Morison equation, single degree of freedom mass spring damper theory, and the Runge-Kutta ode45. 

Specifically, we employ the modified Morison equation to calculate the sea wave forces acting on a cylinder hull of the TLP. 

Two types of sea wave characteristics are analysed including sea waves in the South China Sea to compute the waves loading 

on the hull. Evaluated results are incorporated into the equation of motion of the platform, modeled as a single degree of freedom 

mass-spring-damper system to obtain the platform displacement at x-axis direction. The results showed that the dynamic response 

of the platform under the influence of sea wave A exhibits a displacement of 0.02 m in the direction of wave propagation parallel 

to the x-axis of the platform. Meanwhile, sea wave B manifests a magnitude at least twenty times larger compared to sea wave 

A, resulting in 0.5 m displacement in the same axis direction. We further examine the consequence of velocity profile of sea 

waves on displacement and time taken for a complete vibrational cycle. A parameter-fed CFD simulation with Star-CCM+ shows 

clear dynamic response of the TLP when acted upon by sea wave A. Obtained results indicate the importance of materials 

selection for construction of the hull tendons based on the motion of the hull and gives a fair estimate for cyclic loading on the 

tendons throughout the life cycle of the platform. 
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INTRODUCTION  

Tension Leg Platform, TLP is a floating platform structure 

widely used in oil exploration all over the world. It is 

designed to operate at deep water region of underwater depth 

ranging from 500 m to 1500 m. TLP consists of four parts 

which are the tendons, skiddable platform rig, hull, and 

production risers. The structure is moored by steel pipes 

connected to seabed and is aligned vertically with the semi-

submersible hull. These steel pipes or tendons are always in 

mechanical tension due to excess buoyancy in the structure 

causing the platform to float in upward direction. The pre-

tensioned tendons installation prevents vertical motion of the 

TLP floating structure. Production facilities were situated in 

the skiddable platform rig above the surface level of the sea. 

The production facilities contain different complex systems, 

fuel gas, gas compression, water injection pump, and crane. 

The platform rig also houses living quarters and pedestal 

crane on the main deck.  Fuel gas skid, and air compressor 

packages on the mezzanine deck, open caisson pump and 

wellhead situated on the production deck. The hull is semi-

submersible and comes in varies designs. The production 

risers serve to transport materials from seafloor to production 
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facilities on the sea surface and vice versa. In TLP, the design 

of top-tensioned risers allows for vertical termination below 

the facility. Similar to pipelines or flowlines, risers transport 

materials such as the explored hydrocarbon, injection fluids, 

and gas lift. Risers are rigid or flexible in structure, and 

especially insulated to withstand seabed temperature.  

To construct this mammoth structure, design engineers have 

to perform critical engineering analysis for tendons using 

theories such as the Pythagorean Theorem, Stress-Strain, and 

the Young’s Modulus relationships. It is possible to locate 

the strain of the tendons using Pythagorean Theorem with 

platform horizontal displacement and water depth as the legs 

of the triangle, and the strain as the hypotenuse. By 

calculating the stress distribution on the vertical section of 

the tendons, the stress-strain relationships can be used to 

obtain the Young’s Modulus required by the system to match 

with the materials’ one. Conventionally, the material of the 

tendons used in the TLP construction is watertight hollow 

composite semi-flexible steel pipes, known for reducing the 

overall submerged weight of the tendons. However, as the 

water depth increases, the thickness of the steel pipe requires 

further solidifying to withstand a greater hydrostatic 

pressure. Increase in thickness leads to increase in tendon 

weight, which in turn reduces the axial stiffness of the 

tendons that holds the platform in position. Therefore, the 

question to predict the horizontal movement of the platform 

opens up the possibility to determine whether the existing 

tendons are able to support a platform built in for example, 

the South China Sea environment. 

Wave-induced force dynamics analysis of the TLP has 

caught the attention of many researchers due to the 

importance of TLP in deep-water oil and gas exploration [1-

15]. Hence, dynamics analysis is required to determine and 

therefore, minimize sea wave impact on the underside of the 

deck. This is to regulate the sea wave low frequency 

horizontal force motion and, to avoid slack of tendons. It is 

also critical to determine the dynamics on the TLP in order 

to prevent snapping of tendons and risers in such an active 

environment. Generally, the TLP behaves like an inverted 

pendulum with sufficient buoyancy force acting on the hull 

to maintain the tendons’ tension. However, after 900 m sea 

depth, the size of the TLP increases remarkably to 

accommodate the sway natural period of deep water to 

prevent slacking of tendons. With its size increases, the 

magnitude of first and second order sea wave forces acting 

on the hull structure increases significantly. As a result, the 

cost of constructing the TLP increases as its size increases 

thus, it brings incredible debt to the rig owner. One solution 

to this problem is to determine the dynamic response of the 

TLP due to wave-induced vibration forces in order to obtain 

an estimate frequency to guarantee safety of the structure and 

scale down the costs. To calculate the dynamic response of 

TLP, we use the classic theory of single degree of freedom 

system to determine the vibrational behaviour of the 

structure. This work also investigates the sea wave load on 

TLP using modified Morison equation and simulate the 

dynamic response of a TLP acted upon by hydrodynamic sea 

wave loading. We compute the drag force and the inertia 

force components on the TLP and determine the empirical 

hydrodynamic coefficients for both forces. Once the sea 

wave forces on TLP have been determined, the next 

objective is to calculate the resulting response of the 

structure as a function of time. Note that his work only covers 

the horizontal displacement of the structure taken as positive 

in the direction of sea wave propagation. We assume that the 

vertical displacement of the structure is negligible due to the 

design nature of TLP that has tensioned tendons, which 

restrict the vertical movement of the structure. This work 

does not cover force-induced structure displacement due to 

wind forces as the wind forces categorize as static. We limit 

our investigation to sea waves impinging normal to the face 

of a cylinder hull structure of the TLP. This is to limit the 

overly complicated calculations involving platform rotation 

when the wave propagation is not parallel to the cylinder 

hull. 

 

LITERATURE REVIEW 

There have been patents generated for the TLP regarding its 

overall structure and mooring systems. H. A. Bourne et al. 

[1] described in detail the advantage of using TLP over 

concrete structure due to the deep-water height. He stressed 

the importance of vertical mooring system components to be 

reliable, inspectable, and replaceable throughout the 

platform life cycle. Thus, his patent revolved around the 

design of the tension legs, which consist of individual 

threaded steel tubular tension leg rods. The proclaimed 

design allows for easily removal of rods for inspection. 

Replacement or reinsertion of new tensioned-rods with 

simple and readily available equipment on board the 

platform may take place without the need for an extra hand 

from onshore. D. I. Karsan [3] added mass stabilizer system 

for the TLP in order to control the first order multiple 

direction movements of the platform. The stabilizer is 

designed to fit beneath the platform at an appropriate 

distance between the hull and seabed to minimize the pitch 

and roll torqueing with sufficient flexibility to avoid shock 

load by sea waves. The stabilizer, sized according to the size 

of the platform and sea depth to provide sufficient 

submerged weight to maintain the platform tendons in 

constant tension while controlling the platform motion. S. R. 

II. William [4] proposed a design that could improve the 

hydrodynamic performance of the TLP. The design includes 

a hull with four radially oriented columns connected with 

four rectangular pontoons. The pontoons allow the mooring 

system with tendons to connect directly at the lower corner 

of the column instead of the base of the pontoons. This patent 

highlights an important method to increase the stability of 

the platform installation via a temporary buoyancy module 

to keep the pontoons from moving due to sea waves before 

securing it to a mooring system and de-ballasted. 

TLP is typically modelled as a rigid body having three 

translations (surge, sway, and heave), and three rotations 

(roll, pitch, and yaw), a six-degree-of-freedom motion. 

However, recent study by A. A. Taflanidis [5] assumed that 

sea wave propagation direction is parallel to the axis of 

symmetry of the TLP. Such an assumption limits the sway, 

roll, and yaw motions of the platform leading to only surge 

(x), heave (z), and pitch (θ) motions with three-degree-of-

freedom. On the other hand, A. K. Jain [6] took another 

approach by considering all six-degree-of-freedoms’ in a 

nonlinear dynamic analysis of TLP under general conditions 
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where wave force is parallel with the axis of symmetry of the 

TLP. He concluded that fluctuation in tension of tendons is 

large due to possible heave period close to the frequently 

occurring wave periods. H. H. Lee [7] considered a complete 

analytical solution of the dynamic behaviour of TLP 

structure with tendons when subjected to wave-induced 

surge motion and flow-induced drag motion. Their general 

equation of motion employs Newton’s second law. The 

motion of tendons subject to wave-induced forces and surge 

motion thus far calculated using Morison’s equation for a 

small body taking into consideration the scattering and 

radiation effects produced by sea wave.  This work found 

that the traditional analysis of TLP without considering the 

effect on tendons overestimates the vibration amplitude of 

the TLP. Unlike conventional analysis, Adrezin & Benaroya 

[8] undertook an interesting approach by modelling the 

equation of motion and response of the TLP undergoing 

planar motion with only a single tendon pinned to the hull 

and the sea floor instead. They modelled the hull as rigid 

cylindrical body and the single tendon as nonlinear elastic 

beam. However, modelling of single tendon attached to the 

hull does not give accurate dynamic response as well as it 

eventually offset the pitch response of the structure 

compared to full tendons arrangement. 

Harleman et al. [9] reported the dynamic analysis of offshore 

structure focusing on structure with four legs in a square 

configuration using “statical” wave force analysis. In their 

experimental platform constructed of plastic placed in a 

wave tank, the highest expected wave is not the critical 

design wave whereas the smaller waves with resonance 

periods have caused twice as high a displacement of the 

platform. They concluded that smaller waves having periods 

close to resonance response of the platform causes maximum 

displacement and structural stresses. S. M. G. Zadeh et al. 

[10] recently performed a nonlinear response analysis of 

fixed offshore platform under a combined force of waves, 

wind, and sea current. They used Morison equation to 

compute the wave force acting on the structure. Their finite 

element analysis approximates a solution for the equations 

governing the continuous areas to obtain the structure 

displacement. A. A. M. Ali et al. [11] used a similar approach 

for a generalized Morison equation to calculate the wave 

load.  

However, they applied wave load on two different wave 

theories of the Airy’s linear theory, and Second Order 

Stoke’s theory in order to obtain the dynamic analysis of the 

structure.  

By comparing both wave theories, they concluded that both 

linear and second order wave theories showed almost 

identical behavioural response on the platform. The Airy’s 

linear theory however generally reduces the computational 

costs. 

Realistically, sea wave profile varies for different locations 

and these profiles can be completely random at different 

times. One of the most feared wave profiles to act on offshore 

structures is the rogue wave profile. Rogue wave is an 

unpredictable wave, greater than twice the size of the 

surrounding waves and, often time comes unexpectedly from 

directions other than the prevailing wind and waves [12]. In 

2005, Shell Mars TLP was hit by Hurricane Katrina, which 

has resulted in an estimate of 300 million dollars in damage 

and one-year production downtime [13]. In recent study, M. 

Rudman & W. P. Cleary [14] have included the rogue wave 

impact on the TLP by looking into the effect of wave 

incidence angle and mooring line tension. They utilized the 

Smooth Particle Hydrodynamic, SPH method to simulate a 

nonlinear dynamic of large wave to observe the effect it has 

on the TLP. Their study concluded that major platform 

motion occurred during the initial wave impact while the 

impact of subsequent wave decreases with time. This impact 

resulted in significant pitch motion within the first four 

seconds of the wave hit followed by significant surge motion 

that led to tendons and risers undergoing large strains. 

Similarly, T. B. Johannessen et al. [15] examined the so-

termed badly behaved problem of a TLP because of extreme 

wave effect. Their research focused on determining the TLP 

tendons loading using improved Volume of Fluid, iVOF 

software instead of dynamic response of the platform. Yet, 

their paper gave an insightful view of TLP tendon loading 

mechanism that sets the standards for tendons response to 

abnormal sea wave conditions. In addition, Wu et al. [2] 

successfully modelled the TLP motion in extreme wave 

event using Computational Fluid Dynamics, CFD simulation 

software. Their results showed positive similarity with 

model test measurement except for initial conditions where 

low frequency waves are involved. They also highlighted 

that CFD software had effectively captured the ringing 

response in tendons tension induced by higher order 

nonlinear wave dynamics. 

 

MORISON EQUATION 

Morison’s equation [16] has been used to calculate the 

hydrodynamic drag and inertia forces since [17]. Its accuracy 

in determining the wave load on cylindrical structure has 

shaped most of the existing platform structures today. 

Morison equation contains two different empirical 

hydrodynamic coefficients each exists in individual 

equation. The drag coefficient, usually known by the symbol 

Cd whereas the inertia coefficient is Cm. Chandrasekaran [18] 

conducted a study on the influence of these coefficients on 

nonlinear response behaviour of TLP under regular waves. 

The study concluded that Cd and Cm have principal effect on 

determining the dynamic behaviour of the TLP. The range 

selection of hydrodynamic coefficients due to water depth 

greatly affects the results of dynamic analysis of the TLP. 

Standardized Morison equation of force per unit length F’ 

can be defined as shown below. 

 

𝐹′ = 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =
1

2
 ρ 𝐶𝑑𝐷�̇�|�̇�| + 

𝜋

4
𝑟𝐶𝑚𝐷2�̈� (1) 

 

where ρ is fluid density or the density of sea water, D is 

cylinder diameter of the hull, �̇� is incident flow velocity of 

the sea wave, Cd is hydrodynamic drag coefficient, Cm is 

hydrodynamic inertia coefficient, and �̈� is the incident flow 

acceleration. Successful computation of the horizontal wave 

force against phase angle with Cd value of 1.2 and, Cm value 

of 2.0 were performed [9]. R. Burrowsa et al. [19] obtained 

an estimate for Cd and Cm values for random seas applied to 

Morison equation using different analytical methods 

including least-squares analysis, cross-spectral analysis, and 

methods of moments. They successfully produced the non-
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dimensional force against time graphs for random sea waves. 

The hydrodynamic forces acting on the hull of a TLP is 

considered as force acting on a slender structure in fluid flow 

by commuting the summation of all sectional forces acting 

on each strip of the structure. Among the forces considered 

are normal force, tangential force, and lift force. The lift 

force is normal to both normal and tangential forces. In 

general, Morison equation is only valid if the diameter of 

cylinder hull is relatively small compared to the wavelength 

such that D/ ≤ 0.2 [20] where D is the diameter of the 

cylinder hull, and λ is the wavelength where both quantities 

are measured in metres. Based on Environmental Conditions 

and Environmental Loads Recommended Practise 

Handbook [21], the drag coefficient Cd is non-dimensional, 

 

𝐶𝑑 =  
𝑓𝑑𝑟𝑎𝑔

0.5𝜌𝐷𝑣2    (2) 

 

where 𝑓𝑑𝑟𝑎𝑔  (N/m) is the sectional drag force, ρ (kg/ m3) is 

the fluid density, D (m) is the diameter of the hull and v (m/s) 

is the velocity of the traveling wave.  

The inertia coefficient Cm is the non-dimensional added mass 

 

𝐶𝑚 = 1 +  
𝑚𝑎

𝜌 𝐴
    (3) 

 

where ma (kg/m) is the added mass per unit length and A (m2) 

is the cross-sectional area of the hull. 

 

METHOD 

The equation and assumptions made so far, and hereafter, are 

based on dynamic analysis of a TLP tethered by four 

tensioned tendons and acted upon by a series of oscillatory 

sea waves. The horizontal displacement denoted by the 

unknown X, measured from the centre of the base of the TLP 

situated on the surface of the sea. The equation of motion of 

a single degree-of-freedom, spring-mass system with linear 

damping under harmonic force is as below. 

 

𝑚
𝑑2𝑋

𝑑𝑡2 + 𝐶
𝑑𝑋

𝑑𝑡
+ 𝐾𝑋 = 𝐹′(𝑡)   (4) 

 

𝑚 �̈�(𝑡) + 𝑐 �̇�(𝑡) + 𝑘 𝑥(𝑡) =  𝐹′(𝑡) 

 

where m (kg) is the effective mass of system of TLP and 

tendons, C (Ns/m) is the damping coefficient of the system, 

K (N/m) is the spring constant of the system, and F’ (N) is 

the hydrodynamic force acting upon the TLP in terms of time 

calculated via Morison’s equation. If the single degree of 

freedom system is forced with a sinusoidal force function, 

the value of 𝐹′(𝑡) can be represented by 𝑓cos (𝜔𝑡) where 𝜔 

is the frequency of the force. In this case, the frequency of 

the force in the sinusoidal function is the frequency of the sea 

wave forcing on the cylinder hull. If the value of 𝐹′(𝑡) 

continuously persists with time, then, the system responds 

only at the frequency of the sea wave, 𝜔 after several force 

cycles.  

 

𝑥(𝑡) = 𝑋 cos(𝜔𝑡 −  𝜃)   (5) 

 

where X and 𝜃 are undetermined constants denote the 

amplitude and phase angle of the response. By substituting 

equation (5) into equation (4), we obtain 

 

𝑋 [ 𝑘 − 𝑚𝜔2) cos(𝜔𝑡 −  𝜃)
− 𝑐𝜔 sin(𝜔𝑡 −  𝜃)] = 𝑓𝑐𝑜𝑠 (𝜔𝑡) 

(6) 

 

Equating the coefficients of cos 𝜔𝑡 and sin 𝜔𝑡 on both sides 

of the equation, we obtain 

 

𝑋[(𝑘 − 𝑚𝜔2) cos 𝜃 + 𝑐𝜔 sin 𝜃 ] = 𝑓  (7) 

 

𝑋[(𝑘 − 𝑚𝜔2) sin 𝜃 + 𝑐𝜔 cos 𝜃 ] = 0 

 

Replacing ω with σ for frequencies, the solution to equation 

(7) yields, 

 

𝑋 =  
𝑓

𝐾 √[1−(
𝜎

𝜎𝑛
)2]

2
+ [2 

𝐶 𝜎

𝐶𝑐 𝜎𝑛
]
2
   (8) 

 

where X (m) is the horizontal displacement of the platform 

measured from the centre of the base, 𝜎𝑛 is the undamped 

natural frequency of the system which can be calculated 

using √𝑘/𝑚 , 𝜎 is the frequency of sea wave,  𝐶𝑐 is the 

critical damping coefficient which can be calculated using 

2√𝑚𝐾, and f is the force amplitude obtained by Morison 

equation. With reference to [5], a similar model of the TLP 

is created for the purpose of this work. Figure 1 shows a 

proposed model of TLP with four tendons connected to the 

base. The X (t), and –X (t) show the horizontal displacement 

of the platform measured from the centre of the platform. 

The value of F (t) shows the force acting on the tendons and 

cylinder hull. The L value shows the total water depth of the 

platform and the tendons length. The value of S is defined to 

determine the influence fraction value, which will be 

discussed later. 

 

 
Figure 1: A schematic representation of TLP with four 

tendons connected to the base. 

 

Based on Morison equation, both hydrodynamic drag force 

and the inertial force contribute to F (t). Thus, it cannot be 

presented in a single term of 𝐹𝑠𝑖𝑛 (𝜎𝑡) form. However, 

Fourier series approximation of F (t) represents a series of 

sine terms to any desired degree of accuracy. Since the 
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equation of motion is linear, the component displacement 

due to individual exciting force terms (𝐹𝑠𝑖𝑛 (𝜎𝑡)), in the 

Fourier series can be summed up to determine the total 

platform displacement as a function of time. 

 

𝑋𝑡𝑜𝑡𝑎𝑙(𝑡) =  ∑ 𝑋𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑡)  (9) 

 

Modified cantilever beam theory used by D. R. F. Harleman 

[9] yields the static deflection of the tendons and platform. 

Based on Figure 1, the equation of maximum deflection of 

the deck 𝑋𝑚𝑎𝑥(𝑡) for a force F applied at an elevation S is  

 

𝑋𝑚𝑎𝑥,𝑎𝑐𝑡 =  
𝐹𝑆2

𝑁𝐸𝐼
(

𝐿

4
−  

𝑆

6
)   (10) 

 

In Equation (10), the value of S can be substituted for L 

should the evaluation made for the force F’ applied on the 

platform base, resulting in  

 

𝑋𝑚𝑎𝑥,𝑒𝑞𝑢𝑖𝑣 =  
𝐹′𝐿3

12𝑁𝐸𝐼
   (11) 

 

where E (GPa) is the elastic modulus of the TLP which is the 

elastic modulus of steel based on the eight giant steel tendons 

support buoy. I (kg.m3) is the moment of inertia of TLP, N is 

the number of tendons in the system, which is 4 in this work, 

and L (m) is the length of the tendons. 

In order to determine the relationships of forces F’ and F, an 

influence fraction has been established by equating 

Equations (10) and (11) in the form of ratio 
𝐹′

𝐹
= 𝑓. The f 

value represents the ratio of equivalent deflection over actual 

deflection of the platform. If the value of S is equal to L, the 

influence fraction f is equivalent to value of 1.0, which 

concludes that the value of 𝐹′ is equal to F. 

 
𝐹′

𝐹
= 𝑓 = 3(

𝑆

𝐿
)2 −  2(

𝑆

𝐿
)3   (12) 

 

The spring constant of the system given by the Hooke’s Law 

equation is 𝐹 = 𝑘𝑋. In this paper, the spring constant of the 

equivalent system is 

 

𝐾 =  
𝐹′

𝑋𝑚𝑎𝑥,𝑒𝑞𝑢𝑖𝑣
=

48𝐸𝐼

𝐿3     (13) 

 

The natural frequency of the equivalent system is the same 

as the natural frequency of the actual platform given the 

identical nature of both systems. D. R. F. Harleman [9] was 

able to calculate the natural frequency of similar system 

using the static deflection curve to determine the potential 

and kinetic energy values. Using the Rayleigh’s Energy 

Method, he was able to compute the natural frequency by 

equalling the potential and kinetic energies. In this work, the 

natural frequency of the system is obtained by the following 

equation. 

 

𝜎𝑛 =  √
𝐾

1

𝑔
(𝑊+ 

13

35
𝑁𝑤𝐿)

    (14) 

 

where W (kg) is the weight of the platform, w (kg) is the 

weight of one tendon, N = 4 is the number of tendons, and L 

(m) is the total length of the tendon. By comparing the 

conventional equation of natural frequency in terms of spring 

constant and mass, 𝜎𝑛 =  √𝑘/𝑚  to equation (14), the 

effective mass of the system is found to be  

 

𝑚𝑒𝑓𝑓. =  
1

𝑔
(𝑊 +  

13

35
𝑁𝑤𝐿)   (15) 

 

Accordingly, the critical damping coefficient, 𝐶𝑐 can be 

determined with the following equation 

 

𝐶𝑐 = 2√𝑚𝑒𝑓𝑓.𝑘    (16) 

 

where meff. is the effective mass of the system obtained, and 

k is the spring constant of the system. The damping 

coefficient can be calculated using logarithmic decrement 

method by determining the first and second successive 

positive displacement amplitudes of the platform in a 

complete cycle [22]. 

 

𝜑 =
𝐶

𝐶𝑐
=

1

2𝜋
 (ln

𝑋1

𝑋2
)    (17) 

 

where 𝑋1 (m) is the first positive displacement of the 

platform under wave loading, and 𝑋2 (m) is the second 

positive displacement of the platform under wave loading. 

The frequency of the force loading on the platform is the 

frequency of the harmonically exciting wave as defined by 

𝜎 =
2π

τ
. 

where 𝜏 (s) is the period of the sea wave. The phase angle of 

the system can be calculated using the formula 

 

 = tan−1 [
2

𝐶

𝐶𝑐
.

𝜎

𝜎𝑛

1−(
𝜎

𝜎𝑛
)

2]    (18) 

 

where C is the damping coefficient obtained from equation 

(17), 𝐶𝑐 is the critical damping coefficient obtained from 

equation (16), 𝜎 is the frequency of sea wave obtained from 

equation (8), and 𝜎𝑛 is the undamped natural frequency of 

the platform obtained from equation (14). The final form of 

the equation of motion taking into account Morison’s 

equation and hydrodynamic force coefficients determines 

the overall platform displacement under the force induced by 

linear sea waves. 

 

𝑋(𝑡) =  
𝜋

4
𝑟𝐶𝑚𝐷2𝑎(sin(𝜔𝑡))+ 

1

2
𝑟𝐶𝑑𝐷𝑣2(cos(𝜔𝑡))

𝑘√⌈1−(
𝜎

𝜎𝑛
)

2
⌉

2

+ (2
𝐶𝜎

𝐶𝑐𝜎𝑛
)

2

 (19) 

 

Based on equation (19), we conclude that the inertia 

coefficient 𝐶𝑚 value, and drag coefficient 𝐶𝑑 value 

determine the dominance of the drag and inertia forces. With 

𝐶𝑚 value higher than 𝐶𝑑, the term of the numerator of 

Equation (19) generates the majority of the force acting on 

the platform. On the other hand, if 𝐶𝑑 value is higher, the 

drag force is deemed the greater contributor to the platform 

displacement. It is crucial to determine the platform 

characteristics mentioned beforehand according to different 

sea conditions. Different sea conditions contribute to several 
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variations in the equation such as wave velocity amplitude, 

sea wave frequency, and wave flow acceleration. However, 

average values of the said parameters can be obtained from 

the meteorological and marine departments of each 

jurisdiction. In the case of sea wave velocity amplitude, its 

variation can ranges from 20 m/s with period of 31 s to 30 

m/s with period of 20 s on a normal wave basis depending 

on the wind speed and weather conditions. However, in the 

case of a high velocity waves caused by hurricane and bad 

weather conditions, the wave velocity amplitude can reach 

an unusually high velocity of 200 m/s and has a much smaller 

wave period of 12 s.  

In order for the Runge-Kutta ode45 to accommodate 

Equation (19), we transform this equation into a simple ODE 

that has a single solution component, which specifies an 

anonymous function in the call to the solver. Hence, 

Equation (19) simplifies into 

 
𝑑𝑦

𝑑𝑡
=  

𝐹1 sin 𝜔𝑡+𝐹2 cos 𝜔𝑡

𝐺
= 𝑓(𝑡, 𝑦)   (19.1) 

𝐹1 =  
𝜋

4
𝑟𝐶𝑚𝐷2𝑎      (19.2) 

𝐹2 =  
1

2
𝑟𝐶𝑑𝐷𝑣2      (19.3) 

𝐺 =  𝑘√⌈1 − (
𝜎

𝜎𝑛
)

2

⌉
2

+ (2 (
𝐶𝜎

𝐶𝑐𝜎𝑛
)

2

)  (19.4) 

The terms 𝐹1 𝑎𝑛𝑑 𝐹2 represent the magnitude of inertia and 

drag forces computed using Morison equation, and G as the 

constant value derived from different platform 

characteristics. The single solution component value of  
𝑑𝑦

𝑑𝑡
  

obtained by solving the equation using ode45 represents the 

horizontal movement X of the TLP platform measured from 

the center of the base. With initial conditions y = 𝑦0 = 0 at 

time 𝑡0 = 0, the vector of functions 𝑓(𝑡, 𝑦) or Equation 

(19.1), the mathematical model specifies the platform 

characteristics with the predetermined parameters. With all 

the correct values input into ode45 functions, we regulate all 

variables for the equation of motion governing the platform 

displacement over a determined time span. 

 

RESULTS AND DISCUSSION 

We modify and develop a CFD mesh model based on the 

original CAD model [23]. A simulation of dynamic response 

of the TLP acted upon by sea wave A was developed using 

CFD simulation software, Star-CCM+ as shown in Figure 2. 

Based on Figure 2 (a), the simulation starts with zero 

displacement at t = 0 s. In Figure 2 (b), the wave begins 

affecting the platform at approximately t = 4.25 s. The 

platform surges toward the x-direction upon impact by the 

wave. While in Figure 2 (c), the platform exerts its maximum 

displacement at t = 8.02 s. The platform shows signs of 

heaving at this moment as the tendons cable pulls the 

platform back toward its original position. In Figure 2 (d), 

the platform returns to its original position at t = 14.06 s. 

When t = 20.15 s as shown in Figure 2 (e), the platform 

exhibits a negative displacement at x-direction due to the 

tendons restoring force on the platform. At t = 24.86 s, the 

platform returns to its original position at zero displacement 

at the same position shown in Figure 2 (a), and 2 (f), 

respectively. 

 

 

 

 
Figure 2: Dynamic response of the TLP platform acted upon by sea wave A. 
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The platform parameters used for the analysis in this work 

are based on the TLP constructed by SSPC and Technip-

MMHE [24]. Weather conditions and sea wave parameters 

are based solely on several studies [25, 26]. Table 1 

demonstrates some of the sea waves characteristics. 

 

 

Table 1: Characteristics of two different waves. Platform and sea wave parameters collected from references shown in the text. 

Unit Wave A Wave B 

 (s) 25 12 

 = 2/ (1/s) 0.251 0.253 

�̈� (m/𝑠2) ~ ~ 

 (rad/s) 0.25 0.5 

�̇� (m/s) 25 200 

(m) 625 2500 

 

 

To validate our calculations using Morisons’ equation we 

followed the steps stated in Ref. [20].  

For sea wave A, the wave velocity amplitude at 25 m/s and 

sea wave frequency of 0.25 rad/s (~ 0.04Hz) produces a 

wavelength 𝜆 = 625 𝑚, and 
𝐷

𝜆
= 0.08, a value smaller than 

0.2. For sea wave B, the wave velocity amplitude at 200 m/s 

and sea wave frequency of 0.5 rad/s (~ 0.08Hz) obtains a 

wavelength 𝜆 = 2500 𝑚, and  
𝐷

𝜆
= 0.02, once again, a value 

smaller than 0.2.  

Thus, the above findings validate the use of Morison 

equation to compute the hydrodynamic force for both sea 

waves A and B, respectively. Table 2 lists the summary of 

platform characteristics. 

 

Table 2: Platform characteristics 

W (N) w (N) L (m) D(m)  𝝈𝒏(rad/s) m (kg) 

23 × 106 8000 500 50 1.3 2.9× 106 

 

 

The spring constant of the platform was determined as K = 

5000 kN/m. The natural frequency of the platform is set at 

1.3 rad/s. However, this value may vary based on changes in 

platform equipment weight and number of personnel 

working on deck. The damping ratio  is supposedly 

determined experimentally with logarithmic decrement 

method. However, due to restricted environment in 

conducting on deck or otherwise experiment, the damping 

ratio has been determined by using the plots shown in Figure 

3 by graphing the overdamped, critically damped, and 

underdamped conditions of the platform after following a 

smash by sea wave A. 

 

  
 

Figure 3: Graph of free response under-damped (a), and of critically damped and over damped, (b) of the TLP platform with 

initial displacement of 0.5 m. Figure 3(c) depicts the platform displacement under various damping. 

 

 

The three figures shown above display the free response of 

TLP when acted upon by a one-time 120 kN force generated 

by the surge of sea wave A with an initial displacement of 

0.5 m. The time taken for an under-damped TLP with 𝜑 = 

0.5 to return to zero displacement is 20 s. However, the time 

taken for overdamped, and critically damped for a zero 

return is significantly quicker. In the case of critically 

damped when 𝜑 = 1, the time taken for TLP to return to zero 

displacement is 4.0 s while for the overdamped case or when 

𝜑 > 1, the time taken for TLP to return to zero displacement 
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is more than 6.0 s. Thus, this work adopts the ideal case of 

critically damped vibration on the TLP for further analysis.  

The wave load by sea waves on the TLP is shown in Figure 

4 (a) and (b). In Figure 4 (a), it is shown that the sea wave A 

loading on the TLP reaches 120 kN of force while the sea 

wave B loading shown in Figure 4 (b) reaches 2500 kN 

which is more than 20 times stronger than normal wave 

loading. The pattern of wave loading shown in Figure 4 (a) 

shares similarity in shape and value with the results reported 

in Refs. [8, 10]. However, Ref. [8] results have significantly 

smaller wave loading value due to its scaled down prototype, 

which has smaller hull diameter and different platform 

natural frequency caused by different effective mass of the 

system.

 

 

 

 

  
Figure 4: (a) sea wave A loading vs. time, and (b) sea wave B loading vs. time on the TLP. 

 

 

The results from further analysis are shown in Figures 5 (b), 

for sea wave A and Figure 5 (b) for sea wave B, respectively. 

Note that for economy of space, we disregard Figures 5 (a) 

for both sea wave A and B. Sea wave A contributes a 

horizontal response to the platform under a normal wave 

travelling with a velocity amplitude of 25 m/s in 60 s. The 

peak displacement shown in the graph happens at time of 8 

s, 34 s, and 58 s with a displacement approaching 0.02 m. 

The displacement shown in Figures 5 represents a similar 

pattern with that reported in [2] in terms of surge motion. 

However, the results shown here is more refined and less 

noisy in comparison to results of Ref. [2] where they use a 

CFD model that takes into consideration both wind and 

current load acting simultaneously on the TLP. Figure 5 also 

exerts similarity related with results obtained in [11] with the 

highest amplitude reaching 0.08 m. However, there is a slight 

difference in the pattern of the platform movement due to 

different sea conditions. For sea wave B, the peak occurs 

more frequently at times of 4 s, 17 s, 28 s, 41 s, and 54 s, 

sequentially with a displacement of 0.5 m. The shorter peak-

to-peak time span explains the sea wave B behavior, which 

has a higher frequency value and smaller wave period 

compared to sea wave A. The amplitude of the displacement 

increases linearly proportional to the wave loading. This 

shows that the wave loading on the TLP is directly 

proportional to its horizontal displacement. The maximum 

displacement value obtained from sea wave B is quite similar 

to the surge pattern shown in [8]. 

 

  
Figure 5: Platform displacement vs. time for TLP of sea waves A (right), and B (left) for 60 seconds. 

 

In Figure 6, a direct assessment has been made to compare 

the significance of both sea waves A and B to the 

displacement of the TLP. The sea wave B loading is notably 

more dominant in contribution to the platform displacement 

with higher sea wave loading and greater frequency. On the 

other hand, a 0.02 m and 0.5 m of horizontal displacements 

are insignificant compared to the actual size of the platform. 

However, one should be conscious of the fatigue limit of the 

tendons under such cyclic loading when designing the 

platform to withstand constant sea wave loadings on the 

platform for longer years of operation. 
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Figure 6: Direct comparison between sea wave A and sea wave B in term of period and amplitude. 

 

 

Direct response of the platform under different sea wave 

velocity profiles are produced as shown in Figure 7. Figure 

7 shows the platform displacement under the influence of 

different velocity profile ranging from 20 m/s to 30 m/s. It 

can be seen that as the velocity increases, the platform 

displacement slightly increases upward. The time taken for 

the platform to reach its maximum peak decreases as the 

velocity profile increases. 

 

 
Figure 7: Platform displacement vs. time for the TLP at different velocity profile of sea wave A. 

 

 

In Figure 7, we show that different velocity profile has an 

effect on the overall movement of the platform particular to 

the period of the cycle.  

As the sea waves velocity increases, the time taken for the 

platform to return to initial position decreases. The time 

taken for the platform to complete one cycle for 20 m/s is 32 

s, 25 m/s is 25 s whereas 30 m/s only takes 21 s.  

Another point to take note of is the time taken for the 

displacement to reach its peak value decreases when velocity 

profile increases. This is due to higher velocity profile, which 

exert more force onto the platform tendons, allowing the 

platform to move at a faster rate compared to low velocity 

sea wave. The displacement amplitude increases as the 

velocity increases because higher velocity sea waves 

encompass higher energy level that generates a higher force 

when acted upon the TLP hull. It also creates larger 

displacement compared to low velocity sea waves.  

This phenomenon supports the law of conversation of 

energy, and Newton’s second law where higher velocity 

profile sea waves with higher kinetic energy eventually 

produces higher net force to transfer to the hull during impact 

thus, increases the displacement of the platform.  

The displacement amplitude of the 30 m/s sea waves reaches 

approximately 0.021 m while the lower velocity profile 20 

m/s sea waves only reaches its peak at 0.018 m. 
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Figure 8: Platform displacement vs. time of the TLP for different velocity profile of sea wave B. 

 

 

In Figure 8, we show similar pattern to Figure 7 with 

different displacement amplitudes. As the sea waves velocity 

increases, the time taken for the platform to return to initial 

position decreases. The time taken for the platform to 

complete one cycle for velocity of 175 m/s is 15 s, for 200 

m/s is 13 s whereas the 225 m/s velocity only takes 11 s for 

a complete cycle.  

The displacement amplitude increases as the velocity 

increases which is similar to Figure 7. This phenomenon 

again supports the law of conversation of energy, and 

Newton’s second law. The displacement amplitude of the 

225 m/s sea wave extents to approximately 0.6 m while the 

lower velocity profile of 175 m/s of this sea wave only 

scopes its peak at 0.4 m.  

As shown in Figure 9, the resonance frequency of the TLP 

and the sea waves occurs at the natural frequency of 21 Hz, 

and 460 Hz regardless of the type of wave profile colliding 

with the TLP.  

However, when sea wave A collides with the platform, the 

frequency profile of the TLP contains more noise compared 

to when sea wave B smashes onto the TLP. The frequency 

profile of the TLP under sea wave B shows more 

compactness and uniformity. By comparing the amplitude of 

both sea wave A and B, it is clear that sea wave B endeavors 

a higher amplitude when it reaches frequencies at 

approximately 21 Hz and 460 Hz, which are the resonance 

frequencies of the wave as well as the platform. Therefore, it 

is important to consider the value of resonance frequency 

during design stage of the TLP and tendons alike.  

If taken to full capacity, platform resonance can cause 

catastrophic damages to the tendons due to vigorous 

horizontal movement. In comparison with previous 

investigations, our results exhibit similar pattern with several 

findings such as in [27-29].  

However, these papers show slightly different results in 

terms of amplitude and resonance frequency. This is because 

different platforms may vibrate at their own unique 

frequencies.  

Their overall response may also differ due to difference in 

size, mass, and structure. The difference in sea state and sea 

wave frequency may also contribute to dissimilarity in 

results of this work in contrast to findings published by other 

researchers. Different oceanic waves in different part of the 

world have their frequency and period based on weather 

conditions and geological effects. 

It can be seen that different velocity profile does not affect 

the natural frequency of the platform. All three different 

velocity profiles when acted upon the platform reach 

resonance frequency at approximately 21 Hz and 460 Hz, 

respectively.  

All sea waves reach resonance state at 21 Hz regardless of 

the velocity of the wave. However, the 30 m/s wave velocity 

profile shows a unique resonance frequency at 457 Hz. The 

deviation of data is still acceptable as it is still in the range of 

460 Hz. However, this slight change in frequency value may 

indicate the possibility that the resonance frequency of the 

platform changes as the velocity of the wave increases 

beyond 30 m/s for a normal sea wave such as wave A.  

Theoretically, a single degree-of-freedom spring mass 

damper system only contains one dominant natural 

frequency. The following scenario may explain the presence 

of two natural frequencies. Mathematically, the equation of 

motion of a continuous flexible structure such as the hull 

tendon has an infinite number of vibration modes, which 

gives the possibility of different natural frequencies with the 

platform hull.  

Acceleration, velocity, and displacement of the TLP are 

governed by the transient state of the vibrating tendons. This 

reflects the act of forced vibration of a single-degree-of-

freedom system. At the same time, the generalized Morison 

equation 𝐹′(𝑡) acts as the force function for the steady-state 

vibration of TLP. Hence, vibration of the whole structure 

experiences several modes, which in turn produces several 

natural frequencies. 
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Figure 9: Frequency response of the TLP with different velocity profiles for sea waves A and B, respectively. 

 

 

CONCLUSIONS 

Analytical procedure to calculate the dynamic response of 

the TLP using a single-degree-of-freedom spring mass 

damper system has been established to determine the matter 

of sea wave impact on the horizontal movement of the 

platform that may eventually lead to slacking of tendons. 

Modified Morison wave equation has been integrated into 

the equation of motion of the platform to obtain the wave 

loading and the horizontal displacement of the TLP due to 

wave impact on the underside of the deck. In the event where 

a sea wave similar to wave B is encountered, the platform 

may experience substantial force, twenty times or greater 

than that of sea wave A with a possibility of 0.5 m horizontal 

displacement in the direction of wave propagation. This 

work also studied the consequence of different velocity 

profiles affecting the platform displacement. It can be 

concluded that as the velocity of the sea wave increases, the 

platform displacement amplitude increases, together with 

shorter period to reach the peak displacement value and 

shorter time to return to original position. However, it does 

not convince that the smaller wave is safe in the analysis as 

smaller sea waves with lesser natural period may approach 

resonance frequency with the platform, which is 

approximately 21 Hz, and 460 Hz, as determined. It is 

possible that horizontal displacement of the TLP could 

exceed the results shown in this work upon resonance 

frequency. Different velocity profiles have no noticeable 

influence to bring about changes to the natural frequency of 

the platform.  

A CFD simulation was produced using Star-CCM+ to show 

the possible dynamic response of the TLP when acted upon 

by sea wave A. these results point to the possibility to select 

a lighter material with greater resilience to strain from rogue 

sea waves so as to prolong the life cycle of the tendons. 

However, details on materials selection and vertical stress 

distribution of tendons is not covered as this work focuses on 

the vibrational aspects of the TLP which is to compute the 

possible dynamic response of the TLP under sea wave 

impacts. 
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