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ABSTRACT 

This study investigates the dynamics of Solar flares using the "closed fluid dynamic principle" proposed by Muhammad 

Aslam Musakhail, which reinforces the pre-Einsteinian aether theory. By defining the "aether force" as the difference 

between relativistic total mass and rest mass, the principle provides a novel perspective on the relativistic transitions in 

Solar flare phenomena. The analysis builds on Parker's force-free model and Melrose’s resistive slab theory, extending 

them to describe the dual-phase dynamics of Solar flares: the Alfvénic phase, where massive fermions (v<c) propagate 

as Alfvén waves, and the heat-dissipation phase, where fermions transition to massless states (v=c), driven by current 

sources. Key results reveal that energy dissipation scales with resistivity, and the temporal evolution of Poynting flux and 

magnetic fields highlights distinct transitions between the phases. Numerical simulations demonstrate the exponential 

decay of axial magnetic fields and the helical organization of flux tubes. These findings validate theoretical predictions 

and provide insights into particle acceleration, magnetic reconnection, and energy transfer mechanisms during Solar 

flares. This work not only advances the understanding of Solar flare energetics but also establishes a mathematical 

framework that can be extended to other astrophysical phenomena, such as cosmic ray acceleration and stellar flares. 

Future studies should focus on numerical validation and observational testing to refine the dual-phase model and its 

broader applicability. 
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INTRODUCTION

The dynamic processes underlying Solar flares have long 

been a subject of astrophysical interest due to their 

complex interplay between electromagnetic forces, 

particle physics, and relativistic dynamics.  

Building upon the foundational models proposed by 

Parker and Melrose [1, 2], this paper extends the "closed 

fluid dynamic principle" of Muhammad Aslam 

Musakhail to rigorously explore the dual-phase nature of 

Solar flares [3] within the framework of the aether theory.  

Solar flares, phenomena resulting from the Sun’s 

magnetic reconnection processes, exhibit two distinct but 

overlapping phases: 

 

• Alfvénic Phase 

Characterized by massive fermions propagating 

subluminally (𝑣 < 𝑐) as Alfvén waves [4], driven by a 

potential source. This phase corresponds to Parker’s 

"force-free" model [5]. 
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• Heat-Dissipation Phase 

Defined by the transition of fermions to massless 

particles (𝑣 = 𝑐), behaving as weak-strong gauge bosons, 

sustained by current sources [6]. The mathematical 

investigation centers on Parker’s 𝑓(𝜛)function, where 𝜛 

denotes the radial position within the Solar flare flux 

tube. This function is critical in describing the flux tube’s 

electromagnetic fields and current densities [7].  

By analogy with the "twin paradox" in special relativity, 

we explore three key values of 𝑓(𝜛), 𝑓(𝜛) = 0, 1/2,1, 

drawing connections between the relativistic dynamics of 

Solar flares and the foundational principles of general 

relativity [8]. These values reflect critical transitions 

within the system: 

 

• 𝑓(𝜛) = 0 : No acceleration or flux interaction. 

• 𝑓(𝜛) =
1

2
 : Intermediate dynamical state. 

• 𝑓(𝜛) = 1: Maximum energy dissipation, 

corresponding to the completion of the heat-

Dissipation Phase. 

 

The flux tube dynamics are analyzed using two 

formulations of the Poynting vector. The outgoing flux 𝐒 

is expressed as: 

 

𝑆𝑧
′ = 𝑆𝑧

′(𝐵𝑧(𝜛), 𝐵az(𝜛), 𝑓(𝜛))    (1) 

 

where 𝐵𝑧(𝜛) and 𝐵az(𝜛) are the axial and azimuthal 

magnetic field components, respectively. The associated 

current density is given by: 

 

𝐽𝑧
′ = 𝐽𝑧

′ (𝜛, 𝐵az(𝜛), 𝑓(𝜛))     (2) 

 

These formulations are derived using Parker's force-free 

model [2, 5], which simplifies the magnetic field as: 

 

𝐵az(𝜛)2 = −
1

2
𝜛𝐹′(𝜛) 

𝐵𝑧(𝜛)2 = 𝐹(𝜛) +
1

2
𝜛𝐹′(𝜛) 

(3) 

 

Assuming 𝐹(𝜛) = 𝜛 and 𝐹′(𝜛) = 1, the magnetic field 

transitions are modeled as: 
 

𝐵az(𝜛)2 = −
1

2
𝜛 

𝐵𝑧(𝜛)2 = 𝜛 +
1

2
𝜛 

(4) 

 

This introduction lays the foundation for a detailed 

investigation into the dynamic interactions of massive 

and massless particles within Solar flare flux tubes. By 

coupling these models with the principles of special and 

general relativity [8, 9] , this study aims to bridge 

classical astrophysics and modern relativistic physics, 

providing insights into the energetics and stability of 

Solar flares. 

LITERATURE REVIEW 

The study of Solar flares involves the interplay of particle 

physics, electromagnetic theory, and astrophysical 

dynamics. The existing literature forms a foundation for 

the mathematical and physical insights presented in this 

paper, with particular emphasis on Parker’s force-free 

model [2] and Melrose’s contributions to Solar flare flux 

tube dynamics [3, 10, 11].  

This section reviews key studies and theories, 

highlighting their relevance to the dual-phase Solar flare 

model. Here the key propositions and theoretical 

foundations are as: 

1. Photon Properties and Duality 

The paper adopts a novel view of photons as "massless 

fermions," such as electrons and positrons (𝑒−/𝑒+) 

stripped of their rest mass, propagating at the speed of 

light. Two critical properties of photons are asserted [10-

12]. 

 

• Relativistic Mass 

While photons have zero rest mass (𝑚0 = 0), they 

possess relativistic mass given by: 

 

𝐸2 = (𝑝𝑐)2 + (𝑚0𝑐2)2,  𝑚 =
𝑚0

√1 −
𝑣2

𝑐2

 

(5) 

• Electric Charge 

Photons exhibit electric charge, evident in their helical 

propagation along the surfaces of electromagnetic flux 

tubes. 

2. Lorentz Force and Photon Behavior 

The behavior of photons under the Lorentz force is 

critical to understanding flux tube dynamics: 

  

𝐹 = 𝑞(𝐸 + 𝑣 × 𝐵) = 0 ⟹ 𝐸 = −𝑣 × 𝐵  (6) 

 

Using the relationships 𝐸/𝐵 = 𝑐 and 𝐏 = 1/𝜇 (𝐄 × 𝐁), 

photon propagation aligns with the direction of the 

Poynting vector. 

3. Parker’s Force-Free Model 

Parker's model introduces a function 𝑓(𝜛), dependent on 

the radial position 𝜛, to describe the electromagnetic 

behavior of Solar flare flux tubes [2]. The axial (𝐵𝑧(𝜛)) 

and azimuthal (𝐵az(𝜛)) magnetic fields are formulated 

as: 

𝐵az(𝜛)2 = −
1

2
𝜛𝐹′(𝜛) 

𝐵𝑧(𝜛)2 = 𝐹(𝜛) +
1

2
𝜛𝐹′(𝜛) 

(7) 

4. Melrose’s Contributions 

Melrose extended Parker's work by proposing a resistive 

slab model and a radial electric field for flux tubes [1, 3]. 

His framework integrates an electromagnetic 4-vector 

representation: 
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𝐀 = ( 𝐽 ⋅ 𝐸 , 𝐸 × 𝐵)     (8) 

which this study leverages to elucidate the dual-phase 

Solar flare model. 

Gaps and Contributions 

While Parker and Melrose provided significant insights 

into Solar flare flux tube dynamics, the dual-phase nature 

of Solar flares and their transition between Alfvénic and 

Heat-Dissipation Phase remain inadequately addressed. 

This study builds on their work by: 

 

• Bridging the gap between massive and massless 

particle dynamics in Solar flares. 

• Introducing mathematical models to analyze the 

interplay between potential and current sources 

across phases. 

• Employing advanced 4-vector formulations to 

describe electromagnetic flux dynamics 

comprehensively. 

 

This paper integrates theoretical insights from the works 

of Parker [2], Melrose [1], and Einstein [10], combining 

classical models with modern relativistic approaches. By 

synthesizing these perspectives, the study aims to provide 

a cohesive understanding of Solar flare energetics, 

transitioning from force-free to heat-dissipation 

dynamics. 

METHODOLOGY 

The methodology employed in this study combines 

theoretical physics, mathematical modeling, and 

astrophysical insights to investigate the dynamics of 

Solar flares through the lens of the "aether dynamic 

principle." This section outlines the step-by-step 

framework used to derive and analyze the dual-phase 

model, integrating principles from Einstein's relativity 

[9], Parker's force-free model [2], and the novel "ultimate 

relativity" extension. 

1. Aether Dynamics and Relativity Framework 

The study builds on the “aether dynamic principle,” 

which introduces the concept of an aether force [13, 14], 

𝐹(𝑣), defined as the difference between relativistic and 

rest masses: 

 

𝐹(𝑣) = 𝑚rel − 𝑚0 =
𝑚0

√1 −
𝑣2

𝑐2

− 𝑚0 

(9) 

 

This principle was used to address the "twin paradox" in 

special relativity. Unlike classical relativity, which 

neglects acceleration effects, the aether dynamic 

framework incorporates acceleration phases to resolve 

the clock discrepancies of the twins.  

This necessitates modifying the Newtonian force 

equation, 𝐹 = 𝑚𝑎 to include relativistic corrections 

under aether dynamics [14, 15]. 

2. Transitioning from the Twin Paradox to Solar 

Flare Dynamics 

Energy release in solar flares occurs during the impulsive 

phase [16, 17]. The study bridges the gap between the 

twin paradox resolution and Solar flare modeling [17, 

18]. Solar flares are analyzed [19] as relativistic systems 

where particles transition between massive ( 𝑣 < 𝑐 ) and 

massless (𝑣 = 𝑐) states, analogous to the clock 

acceleration phase in the twin paradox. This is described 

mathematically by: 

 

𝐸2 = (𝑝𝑐)2 + (𝑚0𝑐2)2    (10) 

 

and by considering the relativistic nature of the 

propagating fermions: 

 

𝑚 =
𝑚0

√1−
𝑣2

𝑐2

      (11) 

 

3. Dual-Phase Solar Flare Model 

Solar flares are modeled as flux tubes undergoing two 

overlapping phases. 

 

a. Alfvénic Phase (Potential Source)  

Governed by Parker’s force-free model, where massive 

fermions propagate as Alfvén waves[4, 20]. The 

electromagnetic fields are described by: 

𝐵az(𝜛)2 = −
1

2
𝜛𝐹′(𝜛) 

𝐵𝑧(𝜛)2 = 𝐹(𝜛) +
1

2
𝜛𝐹′(𝜛) 

(12) 

Here, 𝜛 is the radial coordinate, and 𝐹(𝜛) represents a 

flux function. 

 

b. Heat-dissipation Phase (Current Source) 

Characterized by massless fermions propagating at the 

velocity 𝒗 = 𝒄. This phase introduces heat dissipation 

due to interactions of fermions and electromagnetic 

fields, modeled as: 

 

𝑃 = 𝐽 ⋅ 𝐸       (13) 

 

where 𝐽 is the current density and 𝐸 the electric field. 

4. Mathematical Derivation of Flux Tube Dynamics 

The dynamics of the flux tubes are analyzed through the 

Poynting vector formulations: 

 

𝑆𝑧
′ = 𝑆𝑧

′(𝐵𝑧(𝜛)  ,   𝐵az(𝜛)   , 𝑓(𝜛)) 

(14) 

The current density is expressed as: 

 

𝐽𝑧
′ = 𝐽𝑧

′ (𝜛, 𝐵az(𝜛)  , 𝑓(𝜛))    (15) 

 

Using Parker’s force-free conditions, the equations are 

simplified to determine the energy transfer between 

phases and the corresponding electromagnetic field 
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interactions. The resistance and voltage behavior within 

the flux tube are described using Ohm’s law: 

 

𝑉 = 𝐼𝑅     ,  𝑅 ∝
1

𝜛2      (16) 

 

This allows for an analysis of the transition from the 

Alfvénic (voltage-driven) to the heat-dissipation 

(current-driven) phases. 

5. Relativistic Extensions and Ultimate Relativity 

To unify these processes under a single theoretical 

framework, the study extends Einstein’s relativity into 

“ultimate relativity,” encompassing both special and 

general relativistic principles. This includes: 

 
 

• Acceleration Phases: Integrated into special 

relativity to account for transitional dynamics. 

• Mass-Energy Interactions: Analyzed using 

relativistic energy equations to model the interplay 

between massive and massless states. 

6. Computational Approach 

The study employs numerical simulations to solve the 

differential equations governing: 
 

1. Magnetic field dynamics: 

 
𝑑𝐵

𝑑𝜛
= 𝑓(𝐹(𝜛)   ,    𝐹′(𝜛))    (17) 

 

2. Energy dissipation: 

 

𝑃 = 𝜂𝐽2Δ𝑧      (18) 
 

where 𝜂 is the resistivity and Δ𝑧 the flux tube length. The 

results are visualized using plots and diagrams to 

elucidate phase transitions and energy distributions. In 

summary, this methodology establishes a robust 

theoretical framework for analyzing Solar flares, 

combining classical physics, relativistic dynamics, and 

novel aether-based concepts. The integration of Parker’s 

force-free model with advanced mathematical 

formulations ensures a comprehensive understanding of 

the physical processes driving Solar flare energetics. 

RESULTS 

The results of this study derive from a detailed 

mathematical analysis of Solar flare flux tube dynamics, 

using Parker's force-free model and Melrose's resistive 

slab approach. This section presents the key findings of 

the mathematical framework, with an emphasis on the 

physical interpretation of dual-phase dynamics and the 

associated electromagnetic flux. 

1. Poynting Flux Analysis 

The radiation intensity, represented by the Poynting flux 

𝑆𝑧, is directly proportional to the axial current density 

changes within the Solar flare flux tube[21, 22]. The 

governing equation for 𝑆𝑧 is: 

 

𝑆𝑧 = −
1

𝜇0

𝑣𝐴𝑟2 ∫  
𝑗0 − 𝑗1

𝑟2
(1 − 𝜃(𝑧 − 𝑣𝐴𝑡))𝑑𝑧 

(19) 

 

where here 𝜇0 is Permeability of free space, 𝑣𝐴 is Alfvén 

velocity,  𝑟 as Radial position within the flux tube, 𝑗0, 𝑗1 

are current densities before and after the transition and  𝜃 

is Heaviside step function marking the front's passage. 

This equation describes the radiation generated as 

massive fermions propagate axially and azimuthally 

within the flux tube [23]. 

 

 
 

Figure 1: Poynting Flux Over Time: This line plot illustrates the evolution of Poynting flux (𝑆𝑧) over time, 

highlighting a marked phase transition. The plot reflects the energy transfer dynamics during the Solar flare phases, 

directly representing energy flow within the flux tube. It captures the transition from potential-driven (Alfvénic phase) 

to current-driven (heat-dissipation phase) mechanisms. The Poynting flux decreases after reaching a peak, indicating 

energy conversion into heat and radiation. The temporal trends align with theoretical expectations for dual-phase 

dynamics, providing insights into the energy distribution and dissipation processes in Solar flares 
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Figure 2: Temporal Evolution of Axial Magnetic Field: This line plot illustrates the temporal decay of the axial 

magnetic field (𝐵𝑧) over time, modeling the energy loss as magnetic energy converts into heat. The visualization 

captures the temporal dynamics of (𝐵𝑧), showing the transition from the Alfvénic phase to the heat-dissipational phase. 

This behavior aligns with theoretical predictions of magnetic energy dissipation during Solar flare activity. The 

exponential decay observed reflects a rapid loss of magnetic energy, consistent with the characteristics of Solar flares. 

This provides direct evidence of the energy transfer mechanisms discussed in the study 

 

 

 
 

Figure 3: Relativistic Mass vs. Velocity: This line plot illustrates how relativistic mass (𝑚) varies with velocity (𝑣) 

as a fraction of the speed of light (𝑐). The plot highlights the pronounced relativistic effects near 𝑣 ≈ 𝑐, where the mass 

increases rapidly. It demonstrates the transition of fermions from massive (𝑣 < 𝑐) to massless (𝑣 = 𝑐) states during 

the heat-dissipation phase of Solar flares. The findings validate the relativistic energy-momentum relationship, a 

fundamental theoretical underpinning. The rapid mass increase near 𝑣 = 𝑐 provides insights into the mechanisms of 

particle acceleration in Solar flares and underscores the critical role of relativistic dynamics in energy conversion 

processes. 

 

 

The transition 𝑗0 → 𝑗1 corresponds to the establishment of a helical magnetic field [24], which induces changes in the 

axial electric/magnetic fields. 
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Figure 4: Magnetic Fields in Flux Tube: This line plot depicts the axial (𝐵𝑧) and azimuthal (𝐵𝑎𝑧) magnetic field 

strengths as functions of radius (𝜛). The trends of (𝐵𝑧) and (𝐵𝑎𝑧) differ, reflecting their distinct roles within the flux 

tube. The plot highlights the spatial distribution of magnetic fields, which is essential for understanding field 

configurations in flux tubes and aligns with Parker's model of force-free fields. The axial field strength (𝐵𝑧) decreases 

gradually with radius, while the azimuthal field strength (𝐵𝑎𝑧) exhibits a steeper change. This visualization provides 

spatial context for the magnetic field dynamics captured in the heatmaps, offering insights into the flux tube's structural 

and energetic properties. 

 

 

2. Transition Dynamics within the Flux Tube 

As the Alfvénic front propagates, two critical phases of 

electromagnetic interaction are observed [25, 26]. 

a. Alfvénic Phase 

• Massive fermions propagate subluminally (𝑣 < 𝑐) 

as Alfvén waves. 

• The azimuthal magnetic field 𝐵az evolves according 

to: 

𝐵az(𝜛)2 = −
1

2
𝜛𝐹′(𝜛),     (20) 

 

where 𝐹′(𝜛) is the radial derivative of the flux function 

𝐹(𝜛). 

b. Heat-dissipation Phase 

•   Massless fermions (𝒗 = 𝒄) radiate heat and 

electromagnetic energy. 

• The axial current density 𝐽𝑧 is expressed as: 
 

𝐽𝑧
′ = 𝐽𝑧

′ (𝜛, 𝐵az(𝜛)  ,   𝑓(𝜛))    (21) 
 

which incorporates the radial distribution of 

electromagnetic fields. 

3. Energy Dissipation and Resistance 

The transition from Alfvénic to heat-dissipation phases is 

marked by significant energy dissipation. This is 

quantified through the resistive dissipation power [26]. 

 

𝑃 = 𝜂𝐽2Δ𝑧,      (22) 

 

where, 𝜂 is Resistivity of the flux tube material, 𝐽 is the 

current density and Δ𝑧 is the length of the flux tube 

segment under consideration. The resistance 𝑅 of the flux 

tube is inversely proportional to the cross-sectional area: 

 

𝑅 ∝
1

𝑟2       (23) 

 

This resistance governs the transition between voltage-

driven (Alfvénic) and current-driven (heat dissipation) 

phases [27]. 
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Figure 5: Energy Dissipation vs. Resistivity: This line plot illustrates the relationship between energy dissipation 

(𝑃) and resistivity (𝜂). The plot reveals a linear increase, indicating 𝑃 ∝ 𝜂 for a constant current density (𝐽). It 

quantifies heat dissipation during the heat-dissipational phase, highlighting the critical role of resistivity in governing 

energy losses. The results align with the study's focus on energy transfer mechanisms in Solar flares. The observation 

that higher resistivity leads to greater energy dissipation emphasizes the significance of plasma resistivity in energy 

transport and validates Ohm's law within the context of flux tube dynamics 

 

 

4. Helical Propagation and Magnetic Field 

Interactions 

The helical motion of fermions at the flux tube surface 

induces an azimuthal magnetic field 𝐵az which, in turn, 

drives the axial field 𝐵𝑧 [28]. Interaction of these fields is 

encapsulated in the Poynting vector formulation: 

 

|𝑆𝑧| = 𝑓(𝜛) (
1

4𝜋𝜌
)

1

2
𝐵az𝑧

2 𝐵𝑧
2     (24) 

 

The propagation of helically moving fermions and their 

interaction with axial fields provide a mechanism for 

sustaining the energy flux within the system. 

5. Ohm’s Law and Activation Energy 

The energy transitions are further described using Ohm’s 

law, 𝑉 = 𝐼𝑅, where V represents the voltage source 

associated with the Alfvénic phase, and 𝐼 is the current 

generated in the heat-dissipation Phase. The activation 

energy required to initiate the heat-dissipation Phase is 

equivalent to the voltage drop across the flux tube. 

6. Sequential Process and Timescales 

The temporal evolution of the Solar flare system follows 

these sequential steps: 
 

1. 𝑡 = 0: The Alfvénic fronts collide at the center of the 

flux tube (𝑧 = 𝑙/2), initiating the heat-dissipation 

Phase. 

2. 𝑡 = 𝑙/2𝑣𝐴: The Alfvénic fronts reach the ends of the 

flux tube, fully establishing the axial magnetic 

field. 

3. 𝑡 = 3𝑙/2𝑣𝐴: All massive fermions are replaced by 

massless fermions, completing the transition to the 

heat-dissipation Phase. 

 

The results highlight the critical interplay between the 

Alfvénic and heat-dissipation Phases, driven by the 

transition of fermions from massive to massless states. 

The mathematical framework provides a comprehensive 

description of energy dissipation, electromagnetic field 

interactions, and flux tube resistance, paving the way for 

deeper insights into Solar flare dynamics. 

DISCUSSION 

The Discussion section serves as the core interpretation 

of this study, where mathematical discoveries are tied to 

their physical meanings and implications. Below, I have 

expanded the subsections to include more detailed 

explanations, connections to broader concepts, and 

additional mathematical formulations. 

1. The Two-Phase Model of Solar Flares 

The dual-phase model integrates the Alfvénic (force-

free) and heat-dissipation Phases as complementary 

mechanisms that govern Solar flare dynamics. These 

phases represent two distinct but overlapping regimes of 

particle behavior, electromagnetic field interactions, and 

energy transfer. 

1.1 Alfvénic Phase (Force-Free Dynamics) 

Massive fermions (𝑣 < 𝑐) propagate axially at the 

Alfvén velocity (𝑣𝐴), governed by Parker's force-free 

equations. The axial (𝐵𝑧) and azimuthal (𝐵az) magnetic 

fields are described as: 

𝐵az(𝜛)2 = −
1

2
𝜛𝐹′(𝜛) 

𝐵𝑧(𝜛)2 = 𝐹(𝜛) +
1

2
𝜛𝐹′(𝜛) 

(25) 
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Here, 𝜛 is the radial distance from the flux tube center, 

and 𝐹(𝜛) is a flux function determined by the 

configuration of the electromagnetic field. Surface 

fermions propagate helically (𝑣 = 𝑐), generating 

azimuthal currents. These currents sustain the axial 

magnetic field through a feedback mechanism, 

encapsulated in the Poynting vector: 

 

𝑆𝑧 = −
1

𝜇0

𝑣𝐴𝑟2 ∫  
𝑗0 − 𝑗1

𝑟2
(1 − 𝜃(𝑧 − 𝑣𝐴𝑡))𝑑𝑧 

(26) 

1.2 Heat-dissipation Phase (Current-Driven 

Dynamics) 

•  During the heat-dissipation Phase, fermions 

transition to massless states (𝒗 = 𝒄), and 

electromagnetic energy is dissipated as heat. This 

phase introduces a current-driven mechanism 

where the power dissipation is: 

𝑃 = 𝐽 ⋅ 𝐸       (27) 

 

This equation connects the electric field (𝐸) and current 

density (𝐽) to the heat generated within the flux tube. 

 

•  The resistivity (𝜼) plays a critical role, with the 

resistive power dissipation expressed as: 

 

𝑃 = 𝜂𝐽2Δ𝑧,       (28) 

 

where Δ𝑧 is the flux tube length segment under 

consideration. This highlights the exponential rise in 

energy dissipation during this phase. 

2. Electromagnetic Interactions in the Flux Tube 

The flux tube dynamics are governed by the interaction 

of magnetic and electric fields, which drive particle 

motion and energy transfer. 

 

 
 

Figure 6: 3D Visualization of a Solar Flux Tube: This figure provides a 3D visualization of a solar flux tube, 

illustrating the combined helical structure of magnetic fields. The radial (𝐵𝑎𝑧) and axial (𝐵𝑧) magnetic field 

strengths are depicted using color gradients, while the height (𝑍) represents the tube's vertical extent. The helical 

structure captures the azimuthal field, offering an intuitive spatial understanding of how magnetic fields are 

organized and evolve within cylindrical structures. This visualization highlights the complex interplay of 

magnetic fields in the flux tube, which is a critical aspect of Solar flare dynamics. It demonstrates the variation 

in field intensity along the height and azimuthal direction, revealing regions of strong electromagnetic activity 

and energy flux pathways. This insight aligns with the study's focus on energy transport within Solar flares 

 

 

2.1 Azimuthal and Axial Magnetic Fields 

The helical motion of surface fermions induces an 

azimuthal magnetic field ( 𝐵az ), which interacts with the 

axial field (𝐵𝑧). These fields are coupled through the 

force-free conditions: 

 

𝑑𝐵az

𝑑𝜛
+

1

𝜛
𝐵az −

1

𝜇0

𝐽𝑧 = 0 

𝑑𝐵𝑧

𝑑𝜛
+

1

𝜛
𝐵𝑧 = 0 

(29) 

These equations describe the balance of forces within the 

flux tube, ensuring stability during the Alfvénic phase. 
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Figure 7: Axial Field Heatmap: This heatmap illustrates the strength of the axial magnetic field (𝐵𝑧) as a 

function of radius (𝜛) and time. Bright regions represent stronger fields, while darker regions indicate 

weaker fields. The visualization captures the temporal decay of the axial field during the Alfvénic phase and 

its dissipation over time. It also highlights the spatial evolution of the field, supporting the theoretical 

framework of Parker's force-free model. The observed temporal decrease in 𝐵𝑧 corresponds to a decline in 

magnetic energy, associated with heat dissipation and particle acceleration. Additionally, the spatial 

gradients reveal regions of magnetic field concentration, providing insights into flux tube stability. 

 

 

 
 

Figure 8: Azimuthal Field Heatmap: This heatmap illustrates the strength of the azimuthal magnetic field 

(𝐵𝑎𝑧) as a function of radius (𝜛) and time. Field variations are color-coded, emphasizing regions of high 

and low azimuthal activity. The visualization demonstrates the evolution of the azimuthal field, which is 

responsible for the helical propagation of magnetic flux and energy within the flux tube. It supports the dual-

phase model by capturing how (𝐵𝑎𝑧) transitions from the Alfvénic to heat-dissipation phases. Stronger 

azimuthal fields correlate with helicity in the flux tube, which is crucial for energy transport and magnetic 

reconnection. The temporal evolution reflects changes in particle dynamics, providing insights into the 

mechanisms underlying Solar flare activity. 

 

2.2 Energy Flux and the Poynting Vector 

The Poynting vector (𝐒 = 1/𝜇0 (𝐄 × 𝐁)) quantifies the 

energy flow within the flux tube. For cylindrical flux 

tubes, the axial energy flux is: 

 

|𝑆𝑧| = 𝑓(𝜛) (
1

4𝜋𝜌
)

1

2
𝐵az

2  𝐵𝑧
2,    (30) 

 

where 𝑓(𝜛) represents the spatial distribution of energy 

flux, and 𝜌 is the plasma density. 
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3. Relativistic Transitions from Massive to Massless 

States 

The transition of fermions from massive (𝑣 < 𝑐) to 

massless (𝑣 = 𝑐) states is central to understanding Solar 

flare energetics. 

3.1 Relativistic Energy and Momentum 

The transition is governed by the relativistic energy-

momentum relationship: 

 

𝐸2 = (𝑝𝑐)2 + (𝑚0𝑐2)2     (31) 

 

As 𝑚0 → 0, the particles attain the speed of light (𝑣 =
𝑐), contributing to the heat-dissipation Phase. The 

relativistic mass ( 𝑚 ) is: 

 

𝑚 =
𝑚0

√1−
𝑣2

𝑐2

      (32) 

3.2 Sequential Timescales 

The transition occurs over distinct timescales: 

1. 𝑡 = 0 : Collision of Alfvénic fronts at the flux tube 

center (𝑧 = 𝑙/2). 

2. 𝑡 = (𝑙/2)  𝑣𝐴 : Establishment of dual axial fields. 

3. 𝑡 = (3𝑙/2) 𝑣𝐴: Completion of the massless fermion 

transition. 

4. Observational Implications 

This model aligns with observational data from Solar 

magnetograms, offering insights into: 

 

• Helical Structures: Observed in magnetic flux 

tubes, explained by the helical propagation of 

surface fermions. 

• Energy Dissipation Rates: Correspond to the 

exponential rise during the heat-dissipation Phase. 

• Spatial and Temporal Scales: Predict specific 

distributions and evolution patterns for energy 

release. 

5. Broader Connections to Astrophysics 

The findings have implications beyond Solar flares: 

• Magnetic Reconnection: The dual-phase model 

elucidates energy release mechanisms in 

reconnection events. 

• Cosmic Ray Acceleration: Relativistic fermion 

transitions may explain particle acceleration in 

astrophysical jets. 

• Stellar Flares: The framework is extendable to 

other stellar environments. 

6. Limitations and Future Directions 

• Numerical Validation: Analytical solutions should 

be corroborated with simulations. 

• Nonlinear Effects: Explore higher-order 

interactions between fields and particles. 

• Observational Tests: Verify model predictions 

against Solar and stellar flare data. 

 

This expanded discussion delves into the mathematical, 

physical, and observational aspects of the dual-phase 

Solar flare model, linking it to broader astrophysical 

contexts. The incorporation of relativistic transitions and 

electromagnetic interactions offers a comprehensive 

framework for understanding Solar flare energetics. 

CONCLUSION 

This research provides a robust and innovative 

framework for understanding Solar flares through the 

dual-phase model integrating classical electromagnetic 

theory, relativistic principles, and a novel aether 

dynamics perspective. By employing Parker's force-free 

model and extending it with relativistic equations, the 

study elucidates the transition between the Alfvénic and 

heat-dissipation Phases of Solar flares. These phases 

reveal the interplay between massive and massless 

fermions, highlighting mechanisms for energy 

dissipation, particle acceleration, and magnetic 

reconnection. The mathematical formulations presented, 

including the use of the Poynting vector and relativistic 

mass equations, not only bridge gaps in our 

understanding of Solar flare energetics but also provide a 

comprehensive description of flux tube dynamics. The 

study's alignment with observational data, such as 

magnetic flux tube helicity and energy dissipation rates, 

underscores the validity of its models and theoretical 

predictions. 

Furthermore, the research lays the groundwork for 

extending these principles to broader astrophysical 

contexts, such as cosmic ray acceleration and stellar 

flares, suggesting a unified approach to understanding 

energetic astrophysical phenomena. Future work should 

focus on numerical validation of the presented analytical 

solutions, exploration of nonlinear effects in flux tube 

dynamics, and observational verification of the proposed 

dual-phase transitions in Solar and stellar flare systems. 

This study represents a significant step toward 

integrating classical and modern physics to address 

longstanding challenges in Solar astrophysics, offering 

new insights into the energetic and relativistic nature of 

Solar flares. 
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APPENDIX (PYTHON CODE) 

 

1. # -*- coding: utf-8 -*- 

2. """ 

3. Created on Thu Nov 28 21:38:43 2024 

 

4.  

5. """ 

 

6. import matplotlib.pyplot as plt 

7. import numpy as np 

8. from mpl_toolkits.mplot3d import Axes3D 

9. import os 

 

10. # Create a directory for saving all plots 

11. output_dir = "All_plots" 

12. if not os.path.exists(output_dir): 

13. os.makedirs(output_dir) 

 

14. # 1. Poynting Flux Over Time 

15. time = np.linspace(0, 10, 500) 

16. alfven_velocity = 3.0 

17. current_density_change = np.sin(time / 2) ** 2 

18. radius = 1.0 

19. poynting_flux = -1.0 / (4 * np.pi) * alfven_velocity * radius ** 2 * current_density_change 

 

20. plt.figure(figsize=(10, 6)) 

21. plt.plot(time, poynting_flux, label="Poynting Flux ($S_z$)", color="blue", linewidth=2) 

22. plt.axvline(x=5, color="red", linestyle="--", label="Phase Transition") 

23. plt.title("Poynting Flux ($S_z$) Over Time", fontsize=14) 

24. plt.xlabel("Time (arbitrary units)", fontsize=12) 

25. plt.ylabel("Poynting Flux ($S_z$)", fontsize=12) 

26. plt.legend(fontsize=10) 

27. plt.grid(True) 

28. plt.savefig(os.path.join(output_dir, "Poynting_Flux_Over_Time.png")) 

29. plt.close() 

 

30. # 2. Relativistic Mass vs. Velocity 

31. velocity = np.linspace(0, 0.999, 500) 

32. rest_mass = 1.0 

33. relativistic_mass = rest_mass / np.sqrt(1 - velocity ** 2) 

 

34. plt.figure(figsize=(10, 6)) 

35. plt.plot(velocity, relativistic_mass, label="Relativistic Mass ($m$)", color="green", linewidth=2) 

36. plt.axvline(x=0.7, color="orange", linestyle="--", label="Transition Point ($v/c = 0.7$)") 

37. plt.title("Relativistic Mass vs. Velocity", fontsize=14) 

38. plt.xlabel("Velocity as Fraction of $c$", fontsize=12) 

39. plt.ylabel("Relativistic Mass ($m$)", fontsize=12) 

40. plt.legend(fontsize=10) 

41. plt.grid(True) 

42. plt.savefig(os.path.join(output_dir, "Relativistic_Mass_vs_Velocity.png")) 

43. plt.close() 

 

44. # 3. Magnetic Fields in Flux Tube 

45. radius = np.linspace(0.1, 5, 500) 

46. flux_function_derivative = -0.5 

47. axial_magnetic_field = 1 + 0.5 * radius * flux_function_derivative 

48. azimuthal_magnetic_field = -0.5 * radius * flux_function_derivative 
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49. plt.figure(figsize=(10, 6)) 

50. plt.plot(radius, axial_magnetic_field, label="Axial Magnetic Field ($B_z$)", color="blue", linewidth=2) 

51. plt.plot(radius, azimuthal_magnetic_field, label="Azimuthal Magnetic Field ($B_{az}$)", color="green", 

linestyle="--", linewidth=2) 

52. plt.title("Magnetic Fields in Flux Tube", fontsize=14) 

53. plt.xlabel("Radius ($\\varpi$)", fontsize=12) 

54. plt.ylabel("Magnetic Field Strength (arbitrary units)", fontsize=12) 

55. plt.legend(fontsize=10) 

56. plt.grid(True) 

57. plt.savefig(os.path.join(output_dir, "Magnetic_Fields_in_Flux_Tube.png")) 

58. plt.close() 

 

59. # 4. Energy Dissipation Power vs. Resistivity 

60. resistivity = np.linspace(0.1, 5, 500) 

61. current_density = 1.0 

62. dissipation_power = resistivity * current_density ** 2 

 

63. plt.figure(figsize=(10, 6)) 

64. plt.plot(resistivity, dissipation_power, label="Dissipation Power ($P$)", color="red", linewidth=2) 

65. plt.title("Energy Dissipation Power vs. Resistivity", fontsize=14) 

66. plt.xlabel("Resistivity ($\\eta$)", fontsize=12) 

67. plt.ylabel("Dissipation Power ($P$)", fontsize=12) 

68. plt.legend(fontsize=10) 

69. plt.grid(True) 

70. plt.savefig(os.path.join(output_dir, "Energy_Dissipation_vs_Resistivity.png")) 

71. plt.close() 

 

72. # 5. Temporal Evolution of Axial Magnetic Field 

73. temporal_points = np.linspace(0, 10, 500) 

74. axial_field_temporal = np.sin(temporal_points) ** 2 * np.exp(-temporal_points / 5) 

 

75. plt.figure(figsize=(10, 6)) 

76. plt.plot(temporal_points, axial_field_temporal, label="Axial Magnetic Field ($B_z$)", color="purple", 

linewidth=2) 

77. plt.title("Temporal Evolution of Axial Magnetic Field ($B_z$)", fontsize=14) 

78. plt.xlabel("Time (arbitrary units)", fontsize=12) 

79. plt.ylabel("Axial Magnetic Field ($B_z$)", fontsize=12) 

80. plt.legend(fontsize=12) 

81. plt.grid(True) 

82. plt.savefig(os.path.join(output_dir, "Temporal_Evolution_of_Axial_Magnetic_Field.png")) 

83. plt.close() 

 

84. # Advanced Simulations: Heatmaps for Magnetic Field Strength 

85. radius_grid, time_grid = np.meshgrid(radius, time) 

86. axial_field_sim = np.sin(time_grid / 2) * np.exp(-radius_grid / 2) 

87. azimuthal_field_sim = np.cos(time_grid / 3) * np.exp(-radius_grid / 3) 

 

88. plt.figure(figsize=(10, 6)) 

89. plt.contourf(radius_grid, time_grid, axial_field_sim, cmap="viridis", levels=100) 

90. plt.colorbar(label="Axial Magnetic Field Strength ($B_z$)") 

91. plt.title("Axial Magnetic Field Strength ($B_z$) vs. Radius and Time", fontsize=14) 

92. plt.xlabel("Radius ($\\varpi$)", fontsize=12) 

93. plt.ylabel("Time (arbitrary units)", fontsize=12) 

94. plt.savefig(os.path.join(output_dir, "Axial_Field_Heatmap.png")) 

95. plt.close() 

 

96. plt.figure(figsize=(10, 6)) 

97. plt.contourf(radius_grid, time_grid, azimuthal_field_sim, cmap="plasma", levels=100) 

98. plt.colorbar(label="Azimuthal Magnetic Field Strength ($B_{az}$)") 

99. plt.title("Azimuthal Magnetic Field Strength ($B_{az}$) vs. Radius and Time", fontsize=14) 
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100. plt.xlabel("Radius ($\\varpi$)", fontsize=12) 

101. plt.ylabel("Time (arbitrary units)", fontsize=12) 

102. plt.savefig(os.path.join(output_dir, "Azimuthal_Field_Heatmap.png")) 

103. plt.close() 

 

104. # 3D Flux Tube Visualization 

105. z = np.linspace(0, 10, 500) 

106. theta = np.linspace(0, 2 * np.pi, 500) 

107. r = np.linspace(1, 2, 500) 

108. z_grid, theta_grid = np.meshgrid(z, theta) 

109. x = r * np.cos(theta_grid) 

110. y = r * np.sin(theta_grid) 

111. field_strength = np.sin(z_grid) + np.cos(theta_grid) 

 

112. fig = plt.figure(figsize=(12, 8)) 

113. ax = fig.add_subplot(111, projection='3d') 

114. ax.plot_surface(x, y, z_grid, facecolors=plt.cm.viridis(field_strength / np.max(field_strength)), rstride=10, 

cstride=10, alpha=0.8) 

115. ax.set_title("3D Visualization of Solar Flux Tube", fontsize=14) 

116. ax.set_xlabel("X (arbitrary units)", fontsize=12) 

117. ax.set_ylabel("Y (arbitrary units)", fontsize=12) 

118. ax.set_zlabel("Z (Height of Flux Tube)", fontsize=12) 

119. plt.savefig(os.path.join(output_dir, "3D_Flux_Tube.png")) 

120. plt.close() 

 

121. print(f"All plots, including advanced simulations and 3D visualization, have been saved in the '{output_dir}' 

directory.") 

 

 


